The introduction of the fast Fourier transform (FFT) constituted a crucial step towards a faster and more efficient physio-optics modeling and design, since it is a faster version of the Discrete Fourier transform. However, the numerical effort of the operation explodes in the case of field components presenting strong wavefront phases-very typical occurrences in optics- due to the requirement of the FFT that the wrapped phase be well sampled. In this paper, we propose an approximated algorithm to compute the Fourier transform in such a situation. We show that the Fourier transform of fields with strong wavefront phases exhibits a behavior that can be described as a bijective mapping of the amplitude distribution, which is why we name this operation "homeomorphic Fourier transform." We use precisely this characteristic behavior in the mathematical approximation that simplifies the Fourier integral. We present the full theoretical derivation and several numerical applications to demonstrate its advantages in the computing process.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.388022DOI Listing

Publication Analysis

Top Keywords

fourier transform
20
strong wavefront
8
fourier
7
transform
5
theory algorithm
4
algorithm homeomorphic
4
homeomorphic fourier
4
transform optical
4
optical simulations
4
simulations introduction
4

Similar Publications

Predicting long-term recurrence of disease in breast cancer (BC) patients remains a significant challenge for patients with early stage disease who are at low to intermediate risk of relapse as determined using current clinical tools. Prognostic assays which utilize bulk transcriptomics ignore the spatial context of the cellular material and are, therefore, of limited value in the development of mechanistic models. In this study, Fourier-transform infrared (FTIR) chemical images of BC tissue were used to train deep learning models to predict future disease recurrence.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices.

View Article and Find Full Text PDF

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.

View Article and Find Full Text PDF

The plastic revolution's contribution to global pollution gives rise to microplastics (MPs), bearing a toll on the marine environment. Knowledge of mangrove exposure to MPs causing adverse effects has yet to be elucidated. Hence, the physiological responses of R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!