We theoretically show that optical vortices conserve the integer topological charge (TC) when passing through an arbitrary aperture or shifted from the optical axis of an arbitrary axisymmetric carrier beam. If the beam contains a finite number of off-axis optical vortices with same-sign different TC, the resulting TC of the beam is shown to equal the sum of all constituent TCs. If the beam is composed of an on-axis superposition of Laguerre-Gauss modes (n, 0), the resulting TC equals that of the mode with the highest TC. If the highest positive and negative TCs of the constituent modes are equal in magnitude, the "winning" TC is the one with the larger absolute value of the weight coefficient. If the constituent modes have the same weight coefficients, the resulting TC equals zero. If the beam is composed of two on-axis different-amplitude Gaussian vortices with different TC, the resulting TC equals that of the constituent vortex with the larger absolute value of the weight coefficient amplitude, irrespective of the correlation between the individual TCs. In the case of equal weight coefficients of both optical vortices, TC of the entire beam equals the greatest TC by absolute value. We have given this effect the name "topological competition of optical vortices".

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.386401DOI Listing

Publication Analysis

Top Keywords

optical vortices
16
topological charge
8
beam composed
8
composed on-axis
8
constituent modes
8
larger absolute
8
absolute weight
8
weight coefficient
8
weight coefficients
8
optical
6

Similar Publications

Engineering Polar Vortices via Strain Soliton Interactions in Marginally Twisted Multilayer Graphene.

Nano Lett

January 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China.

Strain solitons have been widely observed in van der Waals materials and their heterostructures. They can manifest as one-dimensional (1D) wires and quasi-two-dimensional (2D) networks. However, their coexistence within the same region has rarely been observed, and their interplay remains unexplored.

View Article and Find Full Text PDF

Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.

View Article and Find Full Text PDF

Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.

View Article and Find Full Text PDF

Helical Surface Relief Formation by Two-Photon Polymerization Reaction Using a Femtosecond Optical Vortex Beam.

J Phys Chem Lett

January 2025

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.

View Article and Find Full Text PDF

The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!