An ultracompact and ultrabroadband two-mode (de)multiplexer based on an asymmetric directional coupler for mode division multiplexing is proposed. The device structure consists of a pair of silicon waveguides with an array of plasmonic Au nanocubes sandwiched in the coupling region. The coupling region length of the directional coupler is decreased to 1 µm for coupling of the fundamental transverse magnetic (TM) mode to the first order mode by excitation of the surface plasmon polaritons. This is the shortest length reported for multiplexing of the TM modes until now, to the best of our knowledge. The proposed mode (de)multiplexer has a low loss of 0.72 dB and low crosstalk of -28.3 at the communication wavelength of 1.55 µm. Also, the 3D finite-difference time-domain simulation results show that a broad bandwidth of 190 nm is realized with crosstalk less than -10 and the insertion loss lower than 1.29 dB. Furthermore, impact of the fabrication tolerances on the performance of the proposed (de)multiplexer is studied in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.383518DOI Listing

Publication Analysis

Top Keywords

directional coupler
12
ultracompact ultrabroadband
8
mode division
8
coupling region
8
mode
5
ultrabroadband mode
4
division multiplexer
4
multiplexer based
4
based nanocube
4
nanocube array
4

Similar Publications

Nanophotonic inspection of deep-subwavelength integrated optoelectronic chips.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.

Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.

View Article and Find Full Text PDF

We introduce a novel material for integrated photonics and investigate aluminum gallium nitride (AlGaN) on aluminum nitride (AlN) templates as a platform for developing reconfigurable and on-chip nonlinear optical devices. AlGaN combines compatibility with standard photonic fabrication technologies and high electro-optic modulation capabilities with low loss over a broad spectral range, from UVC to long-wave infrared, making it a viable material for complex photonic applications. In this work, we design and grow AlGaN/AlN heterostructures and integrate several photonic components.

View Article and Find Full Text PDF

Exceptional points facilitate peculiar dynamics in non-Hermitian systems. Yet, in photonics, they have mainly been studied in the classical realm. In this work, we reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.

View Article and Find Full Text PDF

With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.

View Article and Find Full Text PDF

Grating-assisted, contra-directional couplers (GA-CDCs), owing to their four-port operations, can offer several important advantages over traditional, single waveguide-based Bragg gratings. However, how to flexibly design the spectral responses of GA-CDCs has been much less studied. We report the spectral tailoring methodology of GA-CDCs to achieve arbitrary, physically realizable, complex spectral responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!