A novel compact micro-integrated high-power narrow-linewidth external-cavity diode laser around 808 nm is demonstrated. The laser system contains a tapered amplifier consisting of a ridge-waveguide section and a tapered section with separated electrical contacts. Thus, the injection currents to both sections can be controlled independently. An external volume Bragg grating is utilized for spectral narrowing and stabilization. The diode laser system is integrated on a 5×13 aluminum nitride micro-optical bench on a conduction cooled package mount with a footprint of 25×25. The diode laser system is characterized by measuring the output power and spectrum with the injection currents to the ridge-waveguide section () and tapered amplifier section () changed in steps of 25 and 50 mA, respectively. At =200 and =6.0, 3.5 W of output power is obtained with an emission spectral linewidth with an upper bound of 6 pm, and a beam propagation factor in the slow axis, , of 2.6 (1/). The characterization of the temperature stabilization of the laser system shows an increase of the wavelength at a rate of 6.5 pm/K, typical for the applied volume Bragg grating.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.381439DOI Listing

Publication Analysis

Top Keywords

diode laser
16
laser system
16
micro-integrated high-power
8
high-power narrow-linewidth
8
narrow-linewidth external-cavity
8
tapered amplifier
8
ridge-waveguide tapered
8
injection currents
8
volume bragg
8
bragg grating
8

Similar Publications

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.

View Article and Find Full Text PDF

Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.

View Article and Find Full Text PDF

Background: Sensory disturbances and acquired paresthesia constitute a significant proportion of complications following orthognathic surgery. This systematic review examines the application of photobiomodulation (PBM) in managing these complications and its efficacy in promoting sensory recovery.

Methods: In November 2024, a comprehensive digital search was performed across reputable databases, including PubMed, Web of Science, and Scopus, using carefully selected search terms: "orthognathic surgery" AND (physiotherapy OR physical therapy OR laser OR LLLT OR PBM OR light OR LED OR acupuncture) AND (nerve OR neurosensory OR paresthesia).

View Article and Find Full Text PDF

Background: The non-ablative 1940-nm laser induces controlled thermal damage at superficial depths without ablating the epidermis.

Objective: We evaluated a new 1940-nm fractional diode laser for improving pigmentation and skin texture.

Materials And Methods: Participants with mild to severe benign pigmented lesions received up to three laser treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!