We propose a snapshot spectral imaging method for the visible spectral range using two digital cameras placed side-by-side: a regular red-green-blue (RGB) camera and a monochromatic camera equipped with a dispersive diffractive diffuser placed at the pupil of the imaging lens. While spectral imaging was shown to be feasible using a single monochromatic camera with a pupil diffuser [Appl. Opt.55, 432 (2016)APOPAI0003-693510.1364/AO.55.000432], adding an RGB camera provides more spatial and spectral information for stable reconstruction of the spectral cube of a scene. Results of optical experiments confirm that the combined data from the two cameras relax the complexity of the underdetermined reconstruction problem and improve the reconstructed image quality obtained using compressed sensing-based algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.380256 | DOI Listing |
Sensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.
Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Group of Quality Assurance and Industrial Image Processing, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Gustav-Kirchhoff-Platz 2, 98693 Ilmenau, Germany.
Multispectral imaging (MSI) enables the acquisition of spatial and spectral image-based information in one process. Spectral scene information can be used to determine the characteristics of materials based on reflection or absorption and thus their material compositions. This work focuses on so-called multi aperture imaging, which enables a simultaneous capture (snapshot) of spectrally selective and spatially resolved scene information.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China.
Unlabelled: The dual-energy spectral CT (DEsCT) employs material decomposition (MD) technology, opening up novel avenues for the opportunistic assessment of bone status. Radiomics, a powerful tool for elucidating the structural and textural characteristics of bone, aids in the detection of mineral loss. Therefore, this study aims to compare the efficacy of bone status assessment using both bone density measurements and radiomics models derived from MD images and to further explore the clinical value of radiomics models.
View Article and Find Full Text PDFFoods
December 2024
College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China.
Rapid and accurate detection of protein content is essential for ensuring the quality of maize. Near-infrared spectroscopy (NIR) technology faces limitations due to surface effects and sample homogeneity issues when measuring the protein content of whole maize grains. Focusing on maize grain powder can significantly improve the quality of data and the accuracy of model predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!