An ultranarrow-bandwidth-optical-receiver-based ultraviolet trifrequency Rayleigh Doppler wind lidar (DWL) technology is proposed that is able to simultaneously detect stratospheric wind with high precision during the daytime. The lidar system is designed, and the principle of wind measurement is analyzed. An ultranarrow-bandwidth element used for suppressing strong background light is designed as an important part of the ultranarrow-bandwidth optical receiver. A three-channel Fabry-Perot interferometer (FPI) is capable of measuring wind speed. A non-polarized beam splitter cube optically contacted on the three-channel FPI can offer a stable splitting ratio. The parameters of the three-channel FPI are optimized. The structure and parameters of the ultranarrow-bandwidth element are designed, and the transmission curve is measured. The transmission curve and stability of the three-channel FPI are validated. The background photon number is collected with the ultranarrow-bandwidth element and with an interference filter (IF) alternately from 08:00 to 18:00. Based on the selected system parameters and measured background photon number, the detection performance of the proposed lidar is simulated. Simulation results show that with 200 m range resolution from 15 to 25 km, 500 m range resolution from 25 to 40 km, and 30 min total accumulation time for paired line-of-sight (LOS) measurement, within $\pm {100}\;{\rm m/s}$±100m/s LOS wind speed range, the daytime LOS wind speed error is below 4.77 m/s from 15 to 40 km altitude. Compared with the traditional IF-based dual-FPI Rayleigh Doppler lidar, the wind speed accuracies are improved by 1.29-16.29 times and the detection altitudes are improved from 23.55 to 40 km with the same wind-detecting precision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.376887 | DOI Listing |
Otolaryngol Head Neck Surg
January 2025
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Objective: Facial trauma volume is difficult to predict accurately. We aim to understand the capacity of climate and regional events to predict daily facial trauma volume. This can provide epidemiologic understanding and subsequently tailor workforce distribution and scheduling.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Power and Machines Department, Egyptian Chinese University, Cairo, Egypt.
This research is dedicated to improving the control system of wind turbines (WT) to ensure optimal efficiency and rapid responsiveness. To achieve this, the fuzzy logic control (FLC) method is implemented to control the converter in the rotor side (RSC) of a doubly fed induction generator (DFIG) and its performance is compared with an optimized proportional integral (PI) controller. The study demonstrated an enhancement in the performance of the DFIG through the utilization of the proposed FLC, effectively overcoming limitations and deficiencies observed in the conventional controllers, this approach significantly improved the performance of the wind turbine.
View Article and Find Full Text PDFEnviron Int
January 2025
Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China.
A growing body of evidence suggests that non-optimal ambient temperatures are associated with increased incidence rate and mortality of thromboembolic diseases. We aim to investigate the association between apparent temperature (AT) and coagulation, which is a central pathological link in the formation of thrombi. In this study, we conducted a time series analysis using data from 18,894 participants collected from a health check-up center in Beijing between 2014 and 2023, and validated our findings using 20,549 participants from an andrology outpatient clinic.
View Article and Find Full Text PDFThis study introduces a high-resolution wind nowcasting model designed for aviation applications at Madeira International Airport, a location known for its complex wind patterns. By using data from a network of six meteorological stations and deep learning techniques, the produced model is capable of predicting wind speed and direction up to 30-minute ahead with 1-minute temporal resolution. The optimized architecture demonstrated robust predictive performance across all forecast horizons.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Energy and Power Engineering, Xihua University, No. 9999 Hongguang Street, Chengdu, 610039, Sichuan Province, China.
Analysis of crop water requirement and its influencing factors are important for optimal allocation of water resources. However, research on variations of climatic factors and their contribution to wheat water requirement in Xinjiang is insufficient. In our study, daily meteorological data during 1961‒2017 in Xinjiang was collected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!