A novel method, to the best of our knowledge, of fiber transfer delay (FTD) measurement based on phase quantization and delay synthesis is proposed and demonstrated. By detecting the differential phase shifts of a set of frequency-multiplied RF signals transmission through the fiber link with and without the FTD under the test, the ${2}\pi $2π phase ambiguity problem can be solved. To avoid the phase quantization error near the digital quantization boundary, a self-check and error-correction method is proposed so as to greatly improve the reliability of measurement. In the experiment, the measurement repeatability around 0.018 ps within a period of 80 s is achieved for a back-to-back fiber link, and a test resolution of 0.03 ps is proved with a motorized tunable delay line. The system is available for measurement of a large FTD range up to 100 µs with no dead zone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.380136 | DOI Listing |
We report photon-phonon dressing quantization dependency on polarization. Destructive dressing polarization quantization is exhibited in fluorescence (FL) for narrowband signals, while constructive dominant dressing quantization is exhibited in fluorescence (FL) for broadband signals due to phase perturbation. Furthermore, constructive polarization quantization results due to coexistence of generation and dressing effects in strong and competitive Rabi frequency.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Ch 149, Hamburg 22761, Germany.
High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK.
It has been shown that measurements involving indefinite causal order can be superior to those in which a sequence of operations occurs in a specified order. In optics, such measurements are realized naturally in a Sagnac interferometer. We show that such an arrangement can measure the solid angle (on the Poincaré sphere) enclosed by a sequence of unitary transformations of the polarization.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito interior s/n, Colonia Universidad Nacional Autónoma de México, Coyoacán, C.P. 0451 Ciudad Universitaria, Ciudad de México, México, Ciudad de Mexico, 04510, MEXICO.
Magnetic fields can be introduced into discrete models of quantum systems by the Peierls substitution. For tight-binding Hamiltonians, the substitution results in a set of (Peierls) phases that are usually calculated from the magnetic vector potential. As the potential is not unique, a convenient gauge can be chosen to fit the geometry and simplify calculations.
View Article and Find Full Text PDFJ Neural Eng
December 2024
Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, CHINA.
Objective: Measuring causal brain network from neurophysiological signals has recently attracted much attention in the field of neuroinformatics. Traditional data-driven algorithms are computationally time-consuming and unstable due to parameter settings.
Approach: To resolve these limits, we proposed a novel parameter-free technique, called "non-parametric full cross mapping (NFCM)".
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!