We design and theoretically investigate a surface-enhanced Raman scattering (SERS) sensor based on the hybrid plasmonic grating slot waveguide. The sensor is formed by combining a dielectric deep slot waveguide and a metallic grating slot waveguide. The proposed sensor exhibits a high field enhancement with a maximum enhancement factor of 7580.9 at the wavelength of 785 nm, revealing that the electric field in such hybrid plasmonic grating slot waveguide can be extremely strengthened. To better characterize the performance of the sensor in the SERS application, the total normalized volumetric enhancement factor (TNVEF) is proposed, which is determined by both the ||-approximation-based volumetric field enhancement and Raman scattered light collection efficiency. The TNVEF is utilized to characterize the influences of the structural parameters on the sensor and further optimize the sensing structure. Such on-chip SERS sensor can be integrated with a micro-laser and a micro-multiplexer on a photonic platform to realize an all-integrated on-chip SERS detection system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.383198DOI Listing

Publication Analysis

Top Keywords

slot waveguide
20
grating slot
16
hybrid plasmonic
12
plasmonic grating
12
field enhancement
12
high field
8
surface-enhanced raman
8
raman scattering
8
sers sensor
8
enhancement factor
8

Similar Publications

This paper presents a high-performance circularly polarized (CP) magneto-electric (ME) dipole antenna optimized for wideband millimeter-wave (mm-wave) frequencies, specifically targeting advancements in 5G and 6G technologies. The CP antenna is excited through a transverse slot in a printed ridge gap waveguide (PRGW), which operates in a quasi-transverse electromagnetic (Q-TEM) mode. Fabricated on Rogers RT 3003 substrate, selected for its low-loss and cost-effective properties at high frequencies, the design significantly enhances both impedance and axial ratio (AR) bandwidths.

View Article and Find Full Text PDF

A D-Band Dual-Polarized High-Gain LTCC-Based Reflectarray Antenna Using SIW Magnetoelectric-Dipole Elements.

Micromachines (Basel)

December 2024

State Key Laboratory of Millimeter-Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

This paper presents a D-band dual linear-polarized wideband high-gain reflectarray (RA) antenna using low-temperature co-fired-ceramic (LTCC) technology. The proposed element comprises a dual-polarized magnetoelectric (ME) dipole and a multilayer slot-coupling substrate-integrated waveguide (SIW) phase-delay structure, which are organized in accordance with the receiving/reradiating (R/R) principle. The coverage of phase shifts for both orthogonal polarizations is set to be greater than 360 degrees by varying the length of the phase-delay structure.

View Article and Find Full Text PDF

Suspended Slot Membrane Waveguide Based on Germanium-on-Silicon-on-Insulator at λ = 4.23 µm for CO Monitoring.

Micromachines (Basel)

November 2024

Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.

In this work, we propose a novel suspended slot membrane waveguide (SSMW) utilizing a germanium-on-silicon-on-insulator (Ge-on-SOI) platform for carbon dioxide (CO) gas-sensing applications. The design and analysis focus on the absorption line of CO in the mid-infrared region, specifically at a wavelength of 4.23 µm.

View Article and Find Full Text PDF

This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.

View Article and Find Full Text PDF

In this paper, a new wideband coplanar waveguide (CPW) rhomboid slot antenna by using conductor-backed coplanar waveguide (CBCPW) feeding, which works at 4.6 GHz with a relative impedance bandwidth of about 55.6 %, and a gain of more than 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!