Here, we describe an in vitro culture assay to study coronary angiogenesis. Coronary vessels feed the heart muscle and are of clinical importance. Defects in these vessels represent severe health risks such as in atherosclerosis, which can lead to myocardial infarctions and heart failures in patients. Consequently, coronary artery disease is one of the leading causes of death worldwide. Despite its clinical importance, relatively little progress has been made on how to regenerate damaged coronary arteries. Nevertheless, recent progress has been made in understanding the cellular origin and differentiation pathways of coronary vessel development. The advent of tools and technologies that allow researchers to fluorescently label progenitor cells, follow their fate, and visualize progenies in vivo have been instrumental in understanding coronary vessel development. In vivo studies are valuable, but have limitations in terms of speed, accessibility, and flexibility in experimental design. Alternatively, accurate in vitro models of coronary angiogenesis can circumvent these limitations and allow researchers to interrogate important biological questions with speed and flexibility. The lack of appropriate in vitro model systems may have hindered the progress in understanding the cellular and molecular mechanisms of coronary vessel growth. Here, we describe an in vitro culture system to grow coronary vessels from the sinus venosus (SV) and endocardium (Endo), the two progenitor tissues from which many of the coronary vessels arise. We also confirmed that the cultures accurately recapitulate some of the known in vivo mechanisms. For instance, we show that the angiogenic sprouts in culture from SV downregulate COUP-TFII expression similar to what is observed in vivo. In addition, we show that VEGF-A, a well-known angiogenic factor in vivo, robustly stimulates angiogenesis from both the SV and Endo cultures. Collectively, we have devised an accurate in vitro culture model to study coronary angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/60558 | DOI Listing |
Int J Mol Sci
December 2024
Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
Hutchinson-Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of subcutaneous fat, abnormal skin, alopecia, osteoporosis, and progressive joint contractures. Death primarily occurs as the result of complications from progressive atherosclerosis, especially from cardiac disease, such as myocardial infarction or heart failure, or cerebrovascular disease like stroke.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and effectively repairing the heart following myocardial injuries remains a significant challenge. Research has increasingly shown that exosomes derived from mesenchymal stem cells (MSC-Exo) can ameliorate myocardial injuries and improve outcomes after such injuries. The therapeutic benefits of MSC-Exo are largely due to their capacity to deliver specific cargo, including microRNAs and proteins.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany.
Endothelial dysfunction is a strong prognostic factor in predicting the development of cardiovascular diseases. Dysfunctional endothelium loses its homeostatic ability to regulate vascular tone and prevent overactivation of inflammation, leading to vascular dysfunction. These functions are critical for vascular homeostasis and arterial pressure control, the disruption of which may lead to hypertension.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia.
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!