Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production. We show that EnAd, an Ad3/Ad11p chimeric oncolytic adenovirus currently being trialled in colorectal and other cancers, targets the DDR pathway at a number of junctures. Infection is associated with a decrease in irradiation-induced 53BP1 and Rad51 foci formation, and in total DNA ligase IV levels. We also demonstrate a radiation-associated increase in EnAd production in vitro and in a pilot in vivo experiment. Given the current limitations of in vitro techniques in assessing for synergy between these treatments, we adapted the plaque assay to allow monitoring of viral plaque size and growth and utilised the xCELLigence cell adhesion assay to measure cytotoxicity. Our study provides further evidence on the interaction between adenovirus and radiation in vitro and in vivo and suggests these have at least an additive, and possibly a synergistic, impact on cytotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7226394PMC
http://dx.doi.org/10.3390/cancers12040798DOI Listing

Publication Analysis

Top Keywords

inhibition ddr
8
dna damage
8
dsdna breaks
8
dna
5
external beam
4
beam radiation
4
radiation therapy
4
therapy enadenotucirev
4
enadenotucirev inhibition
4
ddr
4

Similar Publications

Introduction: The efficacy of radiotherapy in colorectal cancer (CRC) is often limited by radiation resistance. Ataxia telangiectasia mutated (ATM) is well known for its role in repairing double-strand DNA breaks within the DNA damage response (DDR) pathway. However, whether ATM mediates other mechanisms contributing to radiation resistance remains insufficiently investigated.

View Article and Find Full Text PDF

Breast cancer stem cells (BCSCs) are a rare cell population that is responsible for tumour initiation, metastasis and chemoresistance. Despite this, the mechanism by which BCSCs withstand genotoxic stress is largely unknown. Here, we uncover a pivotal role for the arginine methyltransferase PRMT5 in mediating BCSC chemoresistance by modulating DNA repair efficiency.

View Article and Find Full Text PDF

ATR inhibition promotes synergistic antitumor effect in platinum-resistant pancreatic cancer.

Biochim Biophys Acta Mol Basis Dis

December 2024

Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea; Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Republic of Korea. Electronic address:

Background: Oxaliplatin is a commonly used platinum-based chemotherapy drug for patients with pancreatic cancer (PC). Drug resistance is a major challenge in PC treatment, underscoring the urgent need for new approaches. Targeting DNA damage repair, one of the factors responsible for platinum resistance, is an attractive strategy to overcome drug resistance.

View Article and Find Full Text PDF

Background: Oncogene-driven NSCLC is usually treated with targeted therapies using tyrosine kinase inhibitors (TKIs) to inhibit oncogene downstream signaling pathways, affecting tumor survival and proliferation. EGFR- and KRAS-mutant NSCLCs are the most represented subtypes, and they are treated in clinical practice with oncogene-targeting drugs in the first and second line, respectively. Unfortunately, the development of oncogene-independent resistant clones limits TKI efficacy.

View Article and Find Full Text PDF

AZD1390, an Ataxia telangiectasia mutated inhibitor, enhances cisplatin mediated apoptosis in breast cancer cells.

Exp Cell Res

December 2024

Bingöl University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 12000, Bingöl, Türkiye. Electronic address:

Genomic instability is often caused by deficiencies in DNA damage repair pathways, making therapeutic targeting of DDR beneficial for cancer patients with specific DDR functions. ATM kinase plays a critical role in various cellular processes and its deficiency increases sensitivity to DDR-targeted agents in different cancers. Recent studies highlight ATM inhibition as a potential clinical target, with AZD1390 being a notable ATM inhibitor due to its potent and selective inhibition, ability to accumulate at DNA breaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!