This paper describes the ecotoxicological effects of nanomaterials (NMs) as well as their testing methods. Standard ecotoxicity testing methods are applicable to nanomaterials as well but require some adaptation. We have taken into account methods that meet several conditions. They must be properly researched by a minimum of ten scientific articles where adaptation of the method to the NMs is also presented; use organisms suitable for simple and rapid ecotoxicity testing (SSRET); have a test period shorter than 30 days; require no special equipment; have low costs and have the possibility of optimization for high-throughput screening. From the standard assays described in guidelines developed by organizations such as Organization for Economic Cooperation and Development and United States Environmental Protection Agency, which meet the required conditions, we selected as methods adaptable for NMs, some methods based on algae, duckweed, amphipods, daphnids, chironomids, terrestrial plants, nematodes and earthworms. By analyzing the effects of NMs on a wide range of organisms, it has been observed that these effects can be of several categories, such as behavioral, morphological, cellular, molecular or genetic effects. By comparing the EC values of some NMs it has been observed that such values are available mainly for aquatic ecotoxicity, with the most sensitive test being the algae assay. The most toxic NMs overall were the silver NMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221575 | PMC |
http://dx.doi.org/10.3390/nano10040610 | DOI Listing |
J Surg Res
January 2025
Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri.
Background: Radioactive iodine (RAI) is a common treatment for various thyroid diseases. Previous studies have suggested susceptibility of parathyroid glands to the mutagenic effect of RAI and the development of primary hyperparathyroidism (PHPT). We tested the possible link between prior RAI treatment, disease presentation, and treatment outcomes.
View Article and Find Full Text PDFClin Radiol
December 2024
Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Electronic address:
Aim: To provide a theoretical basis for the study of the pathogenesis of residual dizziness (RD) from the perspective of imaging.
Materials And Methods: The general clinical data of the RD group and healthy control (HC) group were statistically analysed by two independent sample t tests, rank sum tests or chi-square tests. The imaging data of the two groups of people were preprocessed and statistically analysed by using the data processing and analysis for brain imaging (DPABI) software package.
Medicine (Baltimore)
January 2025
Second Hospital of the Air Force Medical University, Xi 'an, China.
Background: This study investigates the therapeutic efficacy of dynamic neuromuscular stabilization (DNS) technology paired with Kinesio Taping in patients with persistent nonspecific low back pain, as well as the effect on neuromuscular function and pain self-efficacy.
Methods: A randomized controlled clinical study was conducted to collect clinical data on DNS combined with KT for the treatment of chronic nonspecific low back pain from November 2023 to April 2024. The inclusion criteria were patients with chronic nonspecific lower back pain, aged between 18 and 30 years old, and without serious underlying medical conditions, such as cardiac disease, hypertension, and diabetes.
Medicine (Baltimore)
January 2025
Emergency Department, Baoding No. 1 Central Hospital, Lianchi District, Baoding City, China.
Background: The performance of quantitative pupillary light reflex (qPLR) and the neurological pupil index (NPi) was used to predict neurological outcomes in cardiac arrest (CA) patients.
Methods: Eligible studies on the ability of the qPLR and NPi to predict neurological outcomes in CA patients were searched from the PubMed and China National Knowledge Infrastructure databases until July 2023. The pooled odds ratio (OR) and its 95% confidence interval (95% CI), area under the curve, sensitivity analysis, and publication bias were analyzed via Stata 14.
J Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!