In this study, we developed a procedure for assembling hepatic microstructures into tube shapes using magnetic self-assembly for in vitro 3D micro-tissue fabrication. To this end, biocompatible hydrogels, which have a toroidal shape, were made using the micro-patterned electrodeposition method. Ferrite particles were used to coat the fabricated toroidal hydrogel microcapsules using a poly-L-lysine membrane. The microcapsules were then magnetized with a 3 T magnetic field, and assembled using a magnetic self-assembly process. During electrodeposition, hepatic cells were trapped inside the microcapsules, and they were cultured to construct tissue-like structures. The magnetized toroidal microstructures then automatically assembled to form tube structures. Shaking was used to enhance the assembly process, and the shaking speed was experimentally optimized to achieve the high-speed assembly of longer tube structures. The flow velocity inside the dish during shaking was measured by particle image velocimetry. Hepatic functions were evaluated to check for side-effects of the magnetized ferrite particles on the microstructures. Collectively, our findings indicated that the developed method can achieve the high-speed assembly of a large number of microstructures to form tissue-like hepatic structures.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ab8487DOI Listing

Publication Analysis

Top Keywords

magnetic self-assembly
12
hepatic microstructures
8
micro-tissue fabrication
8
ferrite particles
8
tube structures
8
achieve high-speed
8
high-speed assembly
8
hepatic
5
microstructures
5
magnetic
4

Similar Publications

In this study, we applied a systematic approach to establish an iterative workflow and to drive the chemical design of thermosensitive, in situ forming injectables as a function of the intended target product profile. Self-assembly, mechanical properties, physical state, and thermal transition behavior were assessed via nuclear magnetic resonance, oscillatory rheology, turbidimetry and visual inspection techniques. Thus, poly(N-isopropylacrylamide) (PNIPAM) and poly(2-alkyl-2-oxazoline)s (PAOx)s with LCSTs below body temperature were studied before and after grafting them onto azido-substituted hyaluronic acid (HA) via strain-promoted azide-alkyne cycloaddition (SPAAC).

View Article and Find Full Text PDF

Halogen-Bearing Peptide Liquid Crystals to Elicit Molecular Alignments for Residual Dipolar Coupling Measurement.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Residual dipolar coupling (RDC) not only contributes to the dynamic analysis of proteins but also provides a robust route for the structure determination of small organic compounds. An essential prerequisite for this methodology is the availability of alignment media. Herein, a series of novel peptide-based alignment media are generated by introducing D-type or halogen-bearing amino acids for RDC measurements.

View Article and Find Full Text PDF

Author Correction: Engineering amphiphilic alkenyl lipids for self-assembly in functional hybrid nanostructures.

Sci Rep

January 2025

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, Sevilla, 41012, Spain.

View Article and Find Full Text PDF

Flexible Tactile Sensors with Self-Assembled Cilia Based on Magnetoelectric Composites.

ACS Appl Mater Interfaces

January 2025

School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.

Traditional tactile sensors are single-function, and it is difficult to meet the needs of applications in complex environments. This paper describes the development and applications of flexible tactile sensors with cilia based on magnetoelectric composites made of neodymium iron boron (NdFeB) microparticles with a silver (Ag) nanoshell in polydimethylsiloxane (PDMS). These sensors adopt the inherent magnetism of NdFeB microparticles and the excellent conductivity of the Ag coating.

View Article and Find Full Text PDF

A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!