Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing.

Biofabrication

Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey 64849, NL, México. Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey 64849, NL, México. Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, United States of America. These authors contributed equally to this work.

Published: June 2020

This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures. Two free-flowing materials are coextruded through a printhead containing a miniaturized Kenics static mixer (KSM) composed of multiple helicoidal elements. This produces a fiber with a well-defined internal multilayer microarchitecture at high-throughput (>1.0 m min). The number of mixing elements and the printhead diameter determine the number and thickness of the internal lamellae, which are generated according to successive bifurcations that yield a vast amount of inter-material surface area (∼10 cm cm) at high resolution (∼10 µm). This creates structures with extremely high surface area to volume ratio (SAV). Comparison of experimental and computational results demonstrates that continuous chaotic 3D printing is a robust process with predictable output. In an exciting new development, we demonstrate a method for scaling down these microstructures by 3 orders of magnitude, to the nanoscale level (∼150 nm), by feeding the output of a continuous chaotic 3D printhead into an electrospinner. The simplicity and high resolution of continuous chaotic printing strongly supports its potential use in novel applications, including-but not limited to-bioprinting of multi-scale layered biological structures such as bacterial communities, living tissues composed of organized multiple mammalian cell types, and fabrication of smart multi-material and multilayered constructs for biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/ab84ccDOI Listing

Publication Analysis

Top Keywords

continuous chaotic
20
chaotic printing
16
micro- nanostructures
8
surface area
8
high resolution
8
chaotic
7
continuous
6
chaotic advection
4
advection facile
4
facile high-throughput
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!