Background: Manually counting a child's respiratory rate (RR) for 60 seconds using an acute respiratory infection timer is the World Health Organization (WHO) recommended method for detecting fast breathing as a sign of pneumonia. However, counting the RR is challenging and misclassification of an observed rate is common, often leading to inappropriate treatment. To address this gap, the acute respiratory infection diagnostic aid (ARIDA) project was initiated in response to a call for better pneumonia diagnostic aids and aimed to identify and assess automated RR counters for classifying fast breathing pneumonia when used by front-line health workers in resource-limited community settings and health facilities. The Children's Automated Respiration Monitor (ChARM), an automated RR diagnostic aid using accelerometer technology developed by Koninklijke Philips NV, and the Rad-G, a multimodal RR diagnostic and pulse oximeter developed by Masimo, were the two devices tested in these studies conducted in the Southern Nations, Nationalities, and Peoples' Region in Ethiopia and in the Karnali region in Nepal.

Objective: In these studies, we aimed to understand the usability of two new automated RR diagnostic aids for community health workers (CHWs; health extension workers [Ethiopia] and female community health volunteers [Nepal]) and their acceptability to CHWs in Ethiopia and Nepal, first-level health facility workers (FLHFWs) in Ethiopia only, and caregivers in both Ethiopia and Nepal.

Methods: This was a prospective, cross-sectional study with a mixed methods design. CHWs and FLHFWs were trained to use both devices and provided with refresher training on all WHO requirements to assess fast breathing. Immediately after training, CHWs were observed using ARIDA on two children. Routine pneumonia case management consultations for children aged 5 years and younger and the device used for these consultations between the first and second consultations were recorded by CHWs in their patient log books. CHWs were observed a second time after 2 months. Semistructured interviews were also conducted with CHWs, FLHFWs, and caregivers. The proportion of consultations with children aged 5 years and younger where CHWs using an ARIDA and adhered to all WHO requirements to assess fast breathing and device manufacturer instructions for use after 2 months will be calculated. Qualitative data from semistructured interviews will be analyzed using a thematic framework approach.

Results: The ARIDA project was funded in November 2015, and data collection was conducted between April and December 2018. Data analysis is currently under way and the first results are expected to be submitted for publication in 2020.

Conclusions: This is the first time the usability and acceptability of automated RR counters in low-resource settings have been evaluated. Outcomes will be relevant for policy makers and are important for future research of this new class of diagnostic aids for the management of children with suspected pneumonia.

International Registered Report Identifier (irrid): DERR1-10.2196/14405.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154937PMC
http://dx.doi.org/10.2196/14405DOI Listing

Publication Analysis

Top Keywords

fast breathing
16
diagnostic aids
12
respiratory rate
8
usability acceptability
8
ethiopia nepal
8
acute respiratory
8
respiratory infection
8
diagnostic aid
8
arida project
8
automated counters
8

Similar Publications

Facile Preparation of Carbon Nanotube-Based Skin-Like Pressure Sensors.

Small

December 2024

Department of Chemistry & Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada.

Flexible sensors have garnered significant interest for their potential to monitor human activities and provide valuable feedback for healthcare purposes. Single-walled carbon nanotubes (SWNTs) are promising materials for these applications but suffer from issues of poor purity and solubility. Dispersing SWNTs with conjugated polymers (CPs) enhances solution processability, yet the polymer sidechains can insulate the SWNTs, limiting the sensor's operating voltage.

View Article and Find Full Text PDF

High-Affinity Lectin Ligands Enable the Detection of Pathogenic Biofilms: Implications for Diagnostics and Therapy.

JACS Au

December 2024

Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.

is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.

View Article and Find Full Text PDF

Humidity sensors have been widely used to monitor humidity in daily life, agriculture fields, and so on. However, conventional sensors are not suitable for wearable devices because of their large dimensions and rigid substrates. Hence, we report a fast response, highly sensitive, and fully flexible humidity sensor on a PI substrate based on the composite material of reduced graphene oxide (rGO)/MoS, with a response time of 0.

View Article and Find Full Text PDF

Background: Bariatric surgery is very effective in long-term weight management. The present study was undertaken to investigate the short-term effects of sleeve gastrectomy (SG) and of Roux-en-Y gastric bypass (RYGB) on (a) gastrointestinal (GI) motility, that is gastric emptying and oro-cecal transit time and (b) secretion of regulatory gut peptides and (c) their interrelationship.

Methods: Prospective single-centre study in which we assessed gastric emptying, oro-cecal transit time and gut peptide release in 28 severely obese individuals before and 2, respectively, 12 months after bariatric surgery (either SG or RYGB).

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!