Most of the reported magnetic adsorbents are difficult to absorb multi-class of per- and polyfluoroalkyl substances (PFASs), especially the short-chain PFASs. In this work, a novel fluorine and nitrogen functionalized magnetic graphene (G-NH-FBC/FeO) was first synthesized and characterized by scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The as-prepared G-NH-FBC/FeO was utilized as adsorbents for the magnetic solid-phase extraction (MSPE) of 19 PFASs from water and functional beverages and showed excellent adsorption capacity probably due to the hydrophobic interaction. Under the optimal pretreatment and instrumental conditions, a selective and sensitive high performance liquid chromatography Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was developed for the determination of PFASs. Results indicated that the proposed method had favorable linearity (R ≥ 0.994) within a wide range of concentrations. Limit of detection (LOD) and limit of quantification (LOQ) for the developed method ranged from 3 ng/L to 15 ng/L and 10 ng/L to 49 ng/L, respectively. Finally, the method was successfully applied to determine PFASs in drinking water, river water, tap water, factory drainage and functional beverages with recoveries ranging from 71.9% to 117.6% and relative standard deviation of <10%. The prepared G-NH-FBC/FeO was easy to recycle and could be reused for five times without significant decrease in extraction recoveries of PFASs. These results demonstrated that this novel magnetic G-NH-FBC/FeO could efficiently enrich PFASs and the proposed method is reliable and robust for the determination of PFASs in water and beverage samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!