Development of metformin hydrochloride loaded dissolving tablets with novel carboxymethylcellulose/poly-l-lysine/TPP complex.

Int J Biol Macromol

School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei 230601, Anhui, China.

Published: July 2020

Natural polymers like polysaccharides, polypeptides and their derivatives are broadly applied in drug delivery due to excellent biocompatibility and biodegradability. In this study, the dissolving tablets, formed with carboxymethylcellulose/poly-l-lysine/tripolyphosphate (CMC/PLL/TPP) complex, were prepared using metformin hydrochloride (MetHCl) as model drug. Confocal laser scanning microscopy observation manifested that FITC-labeled PLL interacted with CMC and formed a uniform interior microstructure. Scanning electron microscope images showed the drug-loaded tablets had well-formed shapes with smooth surfaces. MetHCl embedded interior the microstructures of the tablets and represented in a crystal form. Thermo-gravimetric analysis and differential scanning calorimetry indicated that the drug-loaded tablets had stable thermal properties with less moisture content (3.52%). Fourier transform infrared spectrometer confirmed that the CMC/PLL/TPP complex was fabricated via the electrostatic interactions between -NH, -COO and -[PO-] groups. The drug-loaded tablets had a high drug loading efficiency of 85.76% and drug encapsulation efficiency of 81.47%, and a shorter wetting time of 2.16 min in SSF (pH 6.8) and lower swelling ratio of 233.34%. The drug loaded in the samples could be released completely within 10 min in simulated saliva fluid (SSF pH 6.8), indicating a rapid drug release and dissolving profile in the environment, which could be developed for dissolving tablets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.03.191DOI Listing

Publication Analysis

Top Keywords

dissolving tablets
12
drug-loaded tablets
12
metformin hydrochloride
8
cmc/pll/tpp complex
8
ssf ph 68
8
tablets
7
drug
6
development metformin
4
hydrochloride loaded
4
dissolving
4

Similar Publications

Citric acid is more effective than sodium thiosulfate in chelating calcium in a dissolution model of calcinosis.

Sci Rep

December 2024

Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.

Calcinosis cutis affects 20-40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models.

View Article and Find Full Text PDF

Orally dissolving pilocarpine tablets for xerostomia in advanced cancer: A pilot N-of-1 feasibility study.

Palliat Med

December 2024

Palliative and Supportive Care, Mater Misericordiae Ltd., South Brisbane, QLD, Australia.

Background: Xerostomia is a common and difficult symptom experienced by patients with cancer. Pilocarpine is a cholinergic agent that stimulates salivation.

Aim: To assess the feasibility of conducting a N-of-1 trial to determine the efficacy of pilocarpine orally dissolving tablets in patients with xerostomia.

View Article and Find Full Text PDF

Background: Tapentadol hydrochloride is a potent analgesic commonly used to manage moderate to severe pain. Rapidly dissolving tablets of Tapentadol offer a significant advantage in enhancing patient compliance by providing quick pain relief. The development of fast-dissolving tablets (FDTs) requires careful consideration of formulation parameters to achieve optimal disintegration and dissolution profiles.

View Article and Find Full Text PDF

"3D channel maze" to control drug release from multiple unit tablets.

J Control Release

December 2024

Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China. Electronic address:

Diffusion is defined as general mechanism for drug release from advanced delivery systems, yet dynamic structure of dosage form intrinsically plays an unknown role. The synchrotron radiation X-ray micro-computed tomography (SR-μCT) three-dimensional (3D) imaging and in-depth analysis of 3D structures were applied to readily differentiate materials and accurately capture internal structure changes of multiple unit pellet system (MUPS) and the constituent pellets, visualizing internal 3D structure of a MUPS of theophylline tablets for their 3 levels hierarchy structures: pellets with rapid drug release characteristics, a protective cushion layer and a matrix layer. Drug release pathways were extracted from SR-μCT images and a 3D maze network was constructed using pore network analysis to quantify the internal structural evolution during drug release.

View Article and Find Full Text PDF

High throughput in-line content uniformity measurement of tablets based on real-time UV imaging.

Int J Pharm

December 2024

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp 3., H-1111 Budapest, Hungary.

This paper presents a precursor of a novel, high-throughput, in-line system, which utilizes ultraviolet (UV) imaging in order to predict the active pharmaceutical ingredient (API) content of tablets in real-time, non-destructive manner. Pimobendan, cardiovascular drug used in veterinary medicine was chosen as a fluorescent model API. Two experiments were carried out using different measurement setups, where the tablets were moving at different speeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!