There is still debate on the range of normal physiologic changes of the right ventricle or ventricular (RV) function in athletes. Genetic links to arrhythmogenic cardiomyopathy (ACM) are well-established. There is no current consensus on the importance of extensive exercise and exercise-induced injury to the RV. During the intensive exercise of endurance sports, the cardiac structures adapt to athletic load over time. Some athletes develop RV cardiomyopathy possibly caused by genetic predisposition, whilst others develop arrhythmias from the RV. Endurance sports lead to increased volume and pressure load in both ventricles and increased myocardial mass. The extent of volume increase and changes in myocardial structure contribute to impairment of RV function and pose a challenge in cardiovascular sports medicine. Genetic predisposition to ACM may play an important role in the risk of sudden cardiac death of athletes. In this review, we discuss and evaluate existing results and opinions. Intensive training in competitive dynamic/power and endurance sports leads to specific RV adaptation, but physiological adaptation without genetic predisposition does not necessarily lead to severe complications in endurance sports. Discriminating between physiological adaptation and pathological form of ACM or RV impairment provoked by reinforced exercise presents a challenge to clinical sports cardiologists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pcad.2020.03.015 | DOI Listing |
Scand J Med Sci Sports
January 2025
Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
The maximal oxygen uptake (V̇O) is typically higher in endurance-trained adolescents than in non-endurance-trained peers. However, the specific mechanisms contributing to this remain unclear, as well as the impact of training during this developmental stage. This study aims to compare V̇O and cardiovascular functions between 12-year-old endurance athletes and non-endurance-trained over a 14-month period.
View Article and Find Full Text PDFBMJ Mil Health
January 2025
School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia.
Introduction: Infantry is a physically demanding trade that is associated with elevated rates of musculoskeletal injury. A 17-week longitudinal intervention assessed the effect of a progressive increase in load carriage mass and sprint-intensity intervals on physical performance, physical complaints, medical encounters, physical activity and sleep in infantry trainees.
Methods: 91 infantry trainees from 2 separate platoons, randomly assigned as control (CON) or experimental (EXP), provided written voluntary consent.
JSES Int
November 2024
LAM - Motion Lab, University of Liège, Liège, Belgium.
Background: Musculoskeletal adaptations are common in overhead athletes. As they also are involved in injury prevention, there has been an increase in their evaluation through shoulder screening over the last years. However, for some evaluations, and especially for functional testing, there is a lack of normative values, which limits the interpretation of the values measured.
View Article and Find Full Text PDFSports Med
January 2025
Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
PLoS One
January 2025
Institute of Primary Care, University of Zurich, Zurich, Switzerland.
Background: Several single race events (5 km, 10 km, half-marathon, marathon, ultra-marathon) in different countries and different years have been analyzed in multiple studies, representing the rising interest in endurance-based activity and thus physical health. With focus on participation numbers, performance or sex difference, many single study results were obtained. The running trends in a whole country covering a longer period of time and several race distances are missing so far.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!