Background: The aim of the review was to comprehensively characterize the antimicrobial efficacy of bacteriophages in eliminating pathogens occurring in companion animals, as an alternative to antibiotics for controlling infections that pose potential threats to the health and life of people and to the environment.
Methods: The review contains detailed information on the characteristics and classification of bacteriophages and an analysis of their life cycle. The dominant element is a detailed analysis of the experimental use of bacteriophages in combating infections caused by various microorganisms in companion animals with regard to their potential use in therapy.
Results: It seems that in the near future, phage therapies will provide an alternative to antibiotics in the treatment of diseases caused by multi-drug resistant bacteria in people and animals.
Conclusions: The effectiveness of phage therapies depends on many factors and the properties of the bacteriophages themselves, which requires comprehensive knowledge of them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1574884715666200330105411 | DOI Listing |
Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea. Electronic address:
This study was designed to evaluate the combined antimicrobial activity of selected phage cocktail (MS2+T7 phages) and essential oils (cinnamon, clove, oregano, and thymol) against Escherichia coli ATCC 15597. To select most effective phages, the lytic abilities of individual phages (MS2, phiX174, and T7) and their phage combinations were assessed using the phage spot test and plaque assay at various multiplicity of infections (MOIs) ranging from 0.01 to 100.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.
View Article and Find Full Text PDFbioRxiv
January 2025
Institute for Systems Biology, Seattle, WA, USA.
Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti-phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ~50,000 cells from cultures of a human pathobiont, , infected with a lytic bacteriophage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!