We report imine- and amine-based dinucleating ligands bearing a bisphenol backbone and explore their coordination chemistry with zinc to form zinc alkyl, alkoxide, acetate, and amide complexes. Full characterization of the complexes shows that this ligand framework can support dinuclear and trinuclear complexes. We explore the reactivity of the zinc alkyl and alkoxide complexes as catalysts for the ring opening polymerization of lactide and compared this reactivity to analogous mononuclear complexes. We show that 1) The amine-based complexes are more reactive than the imine-based analogues; 2) The trinuclear zinc alkyl species show unusual control and reproducibility for lactide polymerization; and 3) The extent of bimetallic cooperation is hampered by the ability of the ligand framework to form trinuclear clusters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c00250 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!