Bisphenol A (BPA) is known to cause abnormal neurogenesis in the developing neocortex. The mechanisms of BPA toxicity concerning neuroinflammatory-related endpoints are incompletely characterized. To evaluate the microglial morphology and the gene expression of pro-inflammatory cytokines in the newborn neocortex, ICR mice were exposed to BPA 200 μg/kg/d on gestational day 6 through post-partum day 21. Weanlings exposed during prenatal and postnatal period to BPA showed an increased number of amoeboid-type microglia, a microglial differentiation disruption (the M1/M2 microglial ratio), and an abnormal expression of genes encoding pro-inflammatory factors. These findings suggest that the well-known neurodevelopmental toxicity of BPA may be related to an increased microglial activation and neuroinflammation in the neocortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cga.12370 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!