Perception of vegetation proximity or plant shade informs of potential competition for resources by the neighboring vegetation. As vegetation proximity impacts on both light quantity and quality, perception of this cue by plant photoreceptors reprograms development to result in responses that allow plants to compete with the neighboring vegetation. Developmental reprogramming involves massive and rapid changes in gene expression, with the concerted action of photoreceptors and downstream transcription factors. Changes in gene expression can be modulated by epigenetic processes that alter chromatin compaction, influencing the accessibility and binding of transcription factors to regulatory elements in the DNA. However, little is known about the epigenetic regulation of plant responses to the proximity of other plants. In this manuscript, we review what is known about plant shade effects on chromatin changes at the cytological level, that is, changes in nuclear morphology and high order chromatin density. We address which are the specific histone post-transcriptional modifications that have been associated with changes in shade-regulated gene expression, such as histone acetylation and histone methylation. Furthermore, we explore the possible mechanisms that integrate shade signaling components and chromatin remodelers to settle epigenetic marks at specific loci. This review aims to be a starting point to understand how a specific environmental cue, plant shade, integrates with chromatin dynamics to implement the proper acclimation responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13101 | DOI Listing |
Metabolites
November 2024
Institute of Plant Conservation, Hunan Botanical Garden, Changsha 411006, China.
var. is an ancient relic plant unique to China. However, the typical shade-loving plant is largely exposed to the sun, which poses a major challenge to its conservation.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.
Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).
Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.
Plant Physiol Biochem
December 2024
Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
Agastache rugosa, a perennial herb native to temperate and subtropical regions, shows remarkable adaptive strategies when exposed to varying light and nutrient conditions in tropical environments. Our study reveals new insights into the crosstalk mechanisms involving carbohydrate homeostasis, biomass allocation, and nutrient acquisition in A. rugosa under different environmental conditions.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China.
Low solar irradiance reaching the canopy due to fog and heavy haze is a significant yield-limiting factor worldwide. However, how plants adapt to shade stress and the mechanisms underlying the reduction in leaf photosynthetic capacity and grain yield remain unclear. In this study (conducted during 2018-2021), we investigated the impact of light deprivation (60%) at the pre-anthesis and post-anthesis stages on leaf carboxylation efficiency, source-to-sink relationships, sucrose metabolism, and grain yield of wheat cultivars with contrasting shade tolerance.
View Article and Find Full Text PDFPhotosynth Res
February 2025
Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71E, 60-625, Poznan, Poland.
Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba, Taxus baccata, and Picea abies. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!