Polydatin, a natural product, is detected in many daily diets, such as grape juices and peanut. Autophagy regulation is recognized as a new potential strategy for cancer therapy, and previous studies demonstrated that polydatin showed remarkable anti-cancer ability. Nevertheless, the capability of polydatin to induce autophagy and its role in anti-osteosarcoma remains obscure. In this study, we investigated the anticancer effect of polydatin on human osteosarcoma cell line MG-63 and its underlying mechanism. Our results indicated that polydatin significantly inhibited proliferation of MG-63 cells in a dose- and time-dependent manner, and increased their apoptosis and autophagic flux. Further experiments showed that polydatin reduced the expression and phosphorylation (Y705) level of STAT3 (Signal transducer and activator of transcription 3), increased the expression of autophagy-related genes (Atg12, Atg14, BECN1, PIC3K3), and therewith triggered autophagic cell death in MG-63 cells. Of note, the cytotoxicity effect of polydatin was rescued by co-treatment with Colivelin (STAT3 activator), suggesting the dependency of MG-63 cells on STAT3 for survival in this process. Moreover, polydatin-triggered autophagy and apoptosis were remarkably reduced following exposure to autophagy inhibitor 3-methyladenine, while cell viability was increased. In conclusion, these data demonstrated that polydatin induced MG-63 cell death through inducing apoptosis, and autophagy which was mediated via the STAT3 signaling. Therefore, polydatin might be a potential clinical drug in the remedy of osteosarcoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11418-020-01399-5 | DOI Listing |
DNA Cell Biol
January 2025
Department of Orthopaedics, The Third People's Hospital of Hubei Province, Wuhan, China.
Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63).
View Article and Find Full Text PDFJ Biomater Appl
January 2025
Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Department of Prosthodontics, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, 89, India.
Purpose: The study evaluated the influence of titanium discs, coated with polyacrylonitrile infused curcumin nanofibers on osteoblast activity.
Materials And Methods: The titanium discs were coated with polyacrylonitrile nanofibers infused with curcumin. MG-63 cell lines were utilized for cell culture to assess osteoblast morphology upon exposure of curcumin on titanium discs.
ACS Appl Mater Interfaces
January 2025
Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic.
The current study investigates and compares the biological effects of ultrathin conformal coatings of zirconium dioxide (ZrO) and vanadium pentoxide (VO) on osteoblastic MG-63 cells grown on TiO nanotube layers (TNTs). Coatings were achieved by the atomic layer deposition (ALD) technique. TNTs with average tube diameters of 15, 30, and 100 nm were fabricated on Ti substrates (via electrochemical anodization) and were used as primary substrates for the study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!