Processes controlling spatial and temporal dynamics of spring water chemistry in the Black Forest National Park.

Sci Total Environ

Institute of Applied Geosciences, Division of Hydrogeology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany. Electronic address:

Published: June 2020

Spring water chemistry is influenced by many factors, including geology, climate, vegetation and land use, which determine groundwater residence times and water-rock interaction. Changes in water chemistry can have a profound impact on their associated ecosystems. To protect these ecosystems and to evaluate possible changes, knowledge of the underlying processes and dynamics is important. We collected water samples at 20 locations during 5 campaigns within the water catchment area of the upper Schönmünz river in the Black Forest National Park, Southwest Germany and analyzed them hydro-chemically for their contents of inorganic constituents, organic carbon content, fluorescence properties as well as several physico chemical field parameters and spring discharge. Results show that water chemistry is strongly dependent on geology and that the response of dissolved organic carbon to changes in hydraulic conditions is highly dynamic. Due to increased flow through the upper soil layer during and after rain events, more organic carbon is extracted from the soil and transported with the water. Fluorescence EEM measurements indicate an allochthonous source of this organic carbon. This study can be used as baseline to assess future changes and serve as a supplement to ongoing studies of the spring ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137742DOI Listing

Publication Analysis

Top Keywords

water chemistry
16
organic carbon
16
spring water
8
black forest
8
forest national
8
national park
8
water
7
processes controlling
4
controlling spatial
4
spatial temporal
4

Similar Publications

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.

View Article and Find Full Text PDF

Sponge exhalent metabolites influence coral reef picoplankton dynamics.

Sci Rep

December 2024

Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Falmouth, USA.

Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations.

View Article and Find Full Text PDF

In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH)) and oxidized dextran (ODex). They were subsequently reacted via -NH and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA).

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!