A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formation of novel N-acetylcysteine-hemin adducts abrogates hemin-induced cytotoxicity and suppresses the NRF2-driven stress response in human pro-erythroid K562 cells. | LitMetric

Heme (iron protoporphyrin IX), as the prosthetic group in hemoproteins, regulates vital cellular functions in human tissues. However, free heme released during hemolysis events promotes severe complications to millions of people worldwide. Over the years, thiols like glutathione (GSH) were known to antagonize heme toxicity. In this study, we have uncovered the underlying molecular mechanism by which N-acetylcysteine (NAC), a well-known thiol prevents hemin-induced cytotoxicity (HIC). Hemin-responsive human pro-erythroid K562 cells were employed to assess hemin intracellular accumulation and cytotoxicity at concentrations ≥50 μΜ, in cultures exposed only to hemin and/or both hemin and NAC. NAC inhibited the intracellular accumulation of hemin and prevented hemin-induced cell growth inhibition, cell death, oxidative stress, and accumulation of ubiquitinated proteins. Meanwhile, the activation of the NF-E2-related factor-2 (NRF2)-driven stress gene activation, a key element involved in HIC, was suppressed by NAC. A refined mechanism of the chemical reaction between NAC and hemin leading to adduct formation via a nucleophilic attack on hemin was uncovered for the first time by tandem mass spectrometry analysis (LC-MS/MS). Such thiol-hemin adducts acted as intermediates to mitigate HIC and to suppress hemin-induced NRF2-driven gene activation. Our findings support the concept that NAC-hemin adduct formation is the major novel molecular mechanism rather than the reactive oxygen species-scavenging capacity of thiols to protect cells from HIC. Our results imply that thiols and their derivatives can be of potential therapeutic value in hemolytic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2020.173077DOI Listing

Publication Analysis

Top Keywords

hemin-induced cytotoxicity
8
nrf2-driven stress
8
human pro-erythroid
8
pro-erythroid k562 cells
8
molecular mechanism
8
intracellular accumulation
8
gene activation
8
adduct formation
8
hemin
6
nac
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!