Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heme (iron protoporphyrin IX), as the prosthetic group in hemoproteins, regulates vital cellular functions in human tissues. However, free heme released during hemolysis events promotes severe complications to millions of people worldwide. Over the years, thiols like glutathione (GSH) were known to antagonize heme toxicity. In this study, we have uncovered the underlying molecular mechanism by which N-acetylcysteine (NAC), a well-known thiol prevents hemin-induced cytotoxicity (HIC). Hemin-responsive human pro-erythroid K562 cells were employed to assess hemin intracellular accumulation and cytotoxicity at concentrations ≥50 μΜ, in cultures exposed only to hemin and/or both hemin and NAC. NAC inhibited the intracellular accumulation of hemin and prevented hemin-induced cell growth inhibition, cell death, oxidative stress, and accumulation of ubiquitinated proteins. Meanwhile, the activation of the NF-E2-related factor-2 (NRF2)-driven stress gene activation, a key element involved in HIC, was suppressed by NAC. A refined mechanism of the chemical reaction between NAC and hemin leading to adduct formation via a nucleophilic attack on hemin was uncovered for the first time by tandem mass spectrometry analysis (LC-MS/MS). Such thiol-hemin adducts acted as intermediates to mitigate HIC and to suppress hemin-induced NRF2-driven gene activation. Our findings support the concept that NAC-hemin adduct formation is the major novel molecular mechanism rather than the reactive oxygen species-scavenging capacity of thiols to protect cells from HIC. Our results imply that thiols and their derivatives can be of potential therapeutic value in hemolytic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2020.173077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!