Tissue elasticity is a critical regulator of cell behavior in normal and diseased conditions like fibrosis and cancer. Since the extracellular matrix (ECM) is a major regulator of tissue elasticity and function, several ECM-based models have emerged in the last decades, including in vitro endogenous ECM, decellularized tissue ECM and ECM hydrogels. The development of such models has urged the need to quantify their elastic properties particularly at the nanometer scale, which is the relevant length scale for cell-ECM interactions. For this purpose, the versatility of atomic force microscopy (AFM) to quantify the nanomechanical properties of soft biomaterials like ECM models has emerged as a very suitable technique. In this chapter we provide a detailed protocol on how to assess the Young's elastic modulus of ECM models by AFM, discuss some of the critical issues, and provide troubleshooting guidelines as well as illustrative examples of AFM measurements, particularly in the context of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mcb.2019.11.016 | DOI Listing |
Abdom Radiol (NY)
January 2025
AGH University of Krakow, Krakow, Poland.
Purpose: Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes.
Methods: The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed.
RSC Adv
January 2025
Research Collaboration Center for Nanocellulose, BRIN-Andalas University Padang 25163 West Sumatera Indonesia.
This study investigates the development and characterization of a novel composite material consisting of polyvinyl alcohol (PVA) integrated with (UG) and zinc oxide (ZnO) as fillers. The synergistic effects of UG and ZnO were investigated, focusing on their ability to enhance the film's properties. UV-vis spectrophotometry demonstrated that the composite film effectively blocked all UV (UV-A and UV-B) and blue light wavelengths.
View Article and Find Full Text PDFSci Rep
January 2025
Shandong Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, 266590, China.
Owing to the differences in sedimentary environments in the mining areas of western China, the mechanical properties of rocks in this region are significantly different from those in the central and eastern regions. Therefore, uniaxial cyclic loading-unloading tests were conducted on fine sandstone found in many roof rocks to study the evolution laws of mechanical properties, deformation characteristics, acoustic emission (AE) parameters, and energy under cyclic loading and unloading conditions. The accumulated residual strain, dissipative energy, acoustic emission cumulative ringing counts, and cumulative energy were introduced to characterize the degree of rock damage.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China.
Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.
View Article and Find Full Text PDFCell Rep Med
January 2025
Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China. Electronic address:
C-C chemokine receptor type 2 (CCR2) cardiac-resident macrophages (CCR2 cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2 cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2 cRMs for MI repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!