In a radiological event, the lack of preliminary information about the site of explosion and the difficulty in predicting the accurate path and distribution of radioactive plumes makes it difficult to predict expected health effects of exposed individuals. So far, in such a health evaluation, radiation-induced stochastic health effects such as cancer are not included. The Pasquill-Gifford atmospheric classes generally allow connecting atmospheric stability with dispersion of radioactive contaminants to the environment. In this work, an environmental release of radioactive Cs-137 was simulated and the resulting relative risk for solid cancer incidence among the affected population calculated. The HotSpot health physics code was used to simulate the radioactive atmospheric dispersion and calculate the Total Effective Dose Equivalent (TEDE), which was then used to estimate the relative risk of cancer incidence. The main results from this work suggest that the relative cancer risk and atmospheric stability classes are linked by differences in the TEDE. Such a finding may support triage, because it adds additional information on the potentially affected population at the early stages of an emergency response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00411-020-00840-3 | DOI Listing |
J Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China.
The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin 300350, China.
This study introduces an amide-based gel polymer electrolyte (GPE) for Li-O batteries, optimizing monomer and plasticizer ratios to enhance electrochemical stability and cycling performance. The GPE addresses sluggish kinetics and anode corrosion, enabling operation under atmospheric conditions, and demonstrating significant durability for practical Li-air batteries.
View Article and Find Full Text PDFLangmuir
January 2025
Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India.
Electrochemical CO reduction is crucial in combatting climate change and advancing sustainable energy practices by converting CO into valuable chemicals and fuels, thereby reducing atmospheric CO levels and enabling the storage and utilization of renewable energy from intermittent sources like solar and wind. The selection of electrode materials and platform design plays a critical role in enhancing reaction efficiency and product selectivity during CO reduction. Various metals, both in their solid forms and coated over substrates, have been used in electrochemical CORR.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Elettra Sincrotrone Trieste, Italy.
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Nanjing Institute of Environmental Sciences (NIES), Ministry of Ecology and Environment (MEE), Nanjing, 210042, China.
Terrestrial ecosystem carbon sinks are a natural deposit that absorbs carbon from the atmosphere. A stable land carbon sink facilitates more reliable predictions of carbon sequestration under changing climate conditions. In contrast, a highly variable land carbon sink will introduce significant uncertainty into model predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!