Abstract: Little information has been published on the microbiological aspects of U.S. commercial duck processing. The objective of this study was to measure prevalence and/or levels of bacteria in duck samples representing the live bird and partially or fully processed oven-ready duck meat. At 12 monthly sampling times, samples were collected at six sites along the processing line in a commercial duck slaughter plant. Crop and cecum samples were collected at the point of evisceration. Whole carcass rinse samples were collected before and after carcass immersion chilling plus application of an antimicrobial spray. Leg quarters were collected from the cut-up line before and after application of an antimicrobial dip treatment. All samples (five from each site per monthly replication) were directly plated and/or enriched for Salmonella and Campylobacter. For the last 10 replications, carcass and leg quarter rinse samples were also evaluated for enumeration of total aerobic bacteria, Escherichia coli, and coliforms. Most cecum, crop, and prechill carcass rinse samples were positive for Campylobacter (80, 72, and 67%, respectively). Carcass chilling and chlorinated spray significantly lowered Campylobacter prevalence (P < 0.01), and even fewer leg quarters were positive for Campylobacter (P < 0.01). Passage through a chlorinated dip did not further reduce Campylobacter prevalence on leg quarters. Salmonella was infrequently found in any of the samples examined (≤10%). Total aerobic bacteria, coliforms, and E. coli levels were reduced (P < 0.01) on whole carcasses by chilling but were not different after cut-up or leg quarter dip treatment. Overall, current commercial duck processing techniques as applied in the tested plant were effective for reducing the prevalence and levels of Campylobacter on duck meat products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X.JFP-19-397 | DOI Listing |
Front Vet Sci
January 2025
Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
Vet Sci
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck hepatitis A virus type 3 (DHAV-3) is a viral pathogen that causes acute, high-mortality hepatitis in ducklings, and vaccination with attenuated live vaccines is currently the main preventive measure against it. However, differentiating infected from vaccinated animals (DIVA) is crucial for clinical diagnosis and effective disease control. This study aimed to develop a rapid mismatch amplification mutation assay PCR (MAMA-PCR) diagnostic method to simultaneously detect and differentiate between wild-type and vaccine strains.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.
Wild birds and waterfowl serve as the natural reservoirs of avian influenza viruses (AIVs). When AIVs originating from wild birds cross species barriers to infect mammals or humans, they pose a significant threat to public health. The H12 subtype of AIVs primarily circulates in wild birds, with relatively few isolates reported worldwide, and the evolutionary and biological characteristics of H12 subtype AIVs remain largely unknown.
View Article and Find Full Text PDFWetlands (Wilmington)
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada.
There are increasing global efforts and initiatives aiming to tackle climate change and mitigate its impacts via natural climate solutions (NCS). Wetlands have been considered effective NCS given their capacity to sequester and retain atmospheric carbon dioxide (CO) while also providing a myriad of other ecosystem functions that can assist in mitigating the impacts of climate change. However, wetlands have a dual impact on climate, influencing the atmospheric concentrations of both CO and methane (CH).
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.
Duck virus hepatitis (DVH), caused by duck hepatitis A virus (DHAV), poses significant challenges to duck farming due to high mortality rates in young ducklings. Despite the widespread use of live attenuated vaccines, the genetic diversity within DHAV strains has diminished their cross-protection efficacy. This study aimed to evaluate the cross-protective efficacy of current DHAV-1 and DHAV-3 vaccines against genetically divergent wild strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!