The Atacama Desert is the most arid desert on Earth, focus of important research activities related to microbial biodiversity studies. In this context, metabolic characterization of arid soil bacteria is crucial to understand their survival strategies under extreme environmental stress. We investigated whether strain-specific features of two Microbacterium species were involved in the metabolic ability to tolerate/adapt to local variations within an extreme desert environment. Using an integrative systems biology approach we have carried out construction and comparison of genome-scale metabolic models (GEMs) of two Microbacterium sp., CGR1 and CGR2, previously isolated from physicochemically contrasting soil sites in the Atacama Desert. Despite CGR1 and CGR2 belong to different phylogenetic clades, metabolic pathways and attributes are highly conserved in both strains. However, comparison of the GEMs showed significant differences in the connectivity of specific metabolites related to pH tolerance and CO production. The latter is most likely required to handle acidic stress through decarboxylation reactions. We observed greater GEM connectivity within Microbacterium sp. CGR1 compared to CGR2, which is correlated with the capacity of CGR1 to tolerate a wider pH tolerance range. Both metabolic models predict the synthesis of pigment metabolites (β-carotene), observation validated by HPLC experiments. Our study provides a valuable resource to further investigate global metabolic adaptations of bacterial species to grow in soils with different abiotic factors within an extreme environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7101325 | PMC |
http://dx.doi.org/10.1038/s41598-020-62130-8 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:
The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China.
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!