A primary goal of synthetic biology is to develop gene circuits that perform their intended functions despite variations in the growth conditions. However, this has turned out to be more complicated than it originally seemed because there is a complex interplay between the operation of synthetic gene circuits and the global physiology of host cells. Mathematical models provide an avenue to disentangle the intricacies of this phenomenon and guide the design of synthetic circuits that robustly perform in a variety of conditions. In this work, we review quantitative modeling approaches that have been used to rationalize and predict experimental observations resulting from circuit-to-circuit and circuit-host interactions in bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2020.02.008DOI Listing

Publication Analysis

Top Keywords

gene circuits
12
quantitative modeling
8
synthetic gene
8
modeling interplay
4
synthetic
4
interplay synthetic
4
circuits
4
circuits host
4
host physiology
4
physiology experiments
4

Similar Publications

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

The interplay of sex and genotype in disease associations: a comprehensive network analysis in the UK Biobank.

Hum Genomics

January 2025

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Richards Building B304, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.

Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.

View Article and Find Full Text PDF

Background: Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer.

View Article and Find Full Text PDF

Obesity (OB) and atherosclerosis (AS) represent two highly prevalent and detrimental chronic diseases that are intricately linked. However, the shared genetic signatures and molecular pathways underlying these two conditions remain elusive. This study aimed to identify the shared diagnostic genes and the associated molecular mechanism between OB and AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!