The present work reported a high-throughput strategy for the analysis of 21 perfluorinated compounds (PFCs) in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvent (SUPARS) vortex-mixed microextraction combined with high performance liquid chromatography-Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS). The SUPRAS without heating assistance is less solvent-consumption, meeting the requirements for green environmental protection and sustainable development. Parameters in the microextraction such as volume of dodecanol and tetrahydrofuran (THF), vortexing extraction and centrifugation time, salt concentration were investigated. The optimal extraction conditions were 250 μL of undecanol, 1.0 mL of THF and 20.0% (w/v, 4 g) NaCl. Under the optimum conditions, method limit of detection and method limit of quantitation in the ranges of 0.01-0.08 μg/L and 0.03-0.25 μg/L, good recoveries (72.5-117.8%) and intra-day precision (1.1-11.2%, n = 6), high enrichment factors (48-78) were obtained. The developed method was successfully applied for analysis of PFCs in 13 drinking water, tap water, river water and plant effluent samples collected from southern China. Perfluorobutane sulfonic acid was detected in one river water with concentration of 0.48 μg/L and 1H,1H,2H,2H-Perfluorooctane sulfonic acid was detected in one river water and two plant effluent samples with concentrations in the range of 0.14-0.67 μg/L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.114389 | DOI Listing |
Environ Monit Assess
January 2025
Faculty of Water Supply and Environmental Engineering, Arba Minch University Water Technology Institute, P.O.B 21, Arba Minch, Ethiopia.
In developing nations, the biggest threat to public health is the quality of the water. The Kulfo River provides the majority demand of the domestic water and irrigation along its course; however, it is observed that wastes from anthropogenic and natural activities enter the river. Therefore, this study aimed to examine the pollution status by integrating conventional methods with benthic macroinvertebrates.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Environ Sci Technol
January 2025
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Metabolism-disrupting chemicals (MDCs) have attracted widespread attention due to their contributions to the prevalence of metabolic diseases worldwide. The farnesoid X receptor (FXR) is a typical lipid-sensing nuclear receptor and plays a crucial role in the development of metabolic diseases. However, few studies have examined the FXR activities of environmental samples and the corresponding MDCs.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Dept. of Science Education, Ewha Womans University, Seoul 03760, South Korea. Electronic address:
Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!