Understanding the 1,3-Dipolar Cycloadditions of Allenes.

Chemistry

Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.

Published: September 2020

We have quantum chemically studied the reactivity, site-, and regioselectivity of the 1,3-dipolar cycloaddition between methyl azide and various allenes, including the archetypal allene propadiene, heteroallenes, and cyclic allenes, by using density functional theory (DFT). The 1,3-dipolar cycloaddition reactivity of linear (hetero)allenes decreases as the number of heteroatoms in the allene increases, and formation of the 1,5-adduct is, in all cases, favored over the 1,4-adduct. Both effects find their origin in the strength of the primary orbital interactions. The cycloaddition reactivity of cyclic allenes was also investigated, and the increased predistortion of allenes, that results upon cyclization, leads to systematically lower activation barriers not due to the expected variations in the strain energy, but instead from the differences in the interaction energy. The geometric predistortion of cyclic allenes enhances the reactivity compared to linear allenes through a unique mechanism that involves a smaller HOMO-LUMO gap, which manifests as more stabilizing orbital interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540365PMC
http://dx.doi.org/10.1002/chem.202000857DOI Listing

Publication Analysis

Top Keywords

cyclic allenes
12
13-dipolar cycloaddition
8
cycloaddition reactivity
8
orbital interactions
8
allenes
7
understanding 13-dipolar
4
13-dipolar cycloadditions
4
cycloadditions allenes
4
allenes quantum
4
quantum chemically
4

Similar Publications

Ring expansion metathesis polymerization (REMP) has emerged as a potent strategy for obtaining cyclic polymers over the past two decades. The scope of monomers, however, remains limited due to the poor functional group tolerance and stability of the catalyst, necessitating a rational catalyst design to address this constraint. Here, we present ruthenium complexes featuring tethered cyclic (alkyl)(amino)carbene ligands for REMP, aiming to deepen our understanding of the structure-property relationship in newly designed catalysts.

View Article and Find Full Text PDF

The cumulated π system of a nonsymmetric allene contains three distinct unsaturated carbons that imbue it with unique reactivity toward radicals as compared to its alkene and alkyne counterparts. Despite the synthetic potential of these versatile building blocks, electrochemical transformations of allenes have been historically underexplored. Myriad strategies for easy access to allenes, coupled with the resurgence of interest in sustainable oxidative transformations of hydrocarbons, prompted our efforts to conduct an in-depth investigation of a rare example of an electrochemical TEMPO-mediated allene dioxygenation.

View Article and Find Full Text PDF

Chiral 2-azetines and allenes are highly valuable structural units in natural products and useful chemicals. However, enantioselective synthesis of both 2-azetines and allenes has been extremely challenging. Herein, we present asymmetric construction of chiral 2-azetines (70-98 % yields and up to 96 % ee) through chiral phosphine-catalyzed [2+2] annulation of yne-enones with sulfamate-derived cyclic imines.

View Article and Find Full Text PDF

Synthesis of Tetrasubstituted Enamines Using Secondary Amines and In Situ-Generated Allenes from Nitrocyclopropanes.

J Org Chem

October 2024

Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.

A novel reaction of cyclic and acyclic secondary amines with in situ-generated allene intermediate species from nitro-substituted donor-acceptor cyclopropanes is reported. In the presence of a simple inorganic base, NaOH, tetrasubstituted enamine derivatives can be obtained in moderate to excellent yields. The reaction is operationally easy, features mild reaction conditions and simple inorganic bases, and is free of transition metals.

View Article and Find Full Text PDF

Diels-Alder Cycloadditions of Oxacyclic Allenes and α-Pyrones.

Org Lett

August 2024

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States.

Reactions of α-pyrones with oxacyclic allenes in Diels-Alder trappings are described. We investigate regioselectivity trends and perform competition experiments to assess the influence of structural and electronic features on relative reaction rates. We also demonstrate the stereospecific trapping of an oxacyclic allene, which proceeds in high optical yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!