We studied how mutation rates promote the evolution of advantageous traits in an asexual population. First, to examine the effects of mutation rates on the evolution of an advantageous trait (high competitive ability), we carried out simulation analyses with competition between individuals for survival. Second, to examine the mechanism underlying the promotion of advantageous trait evolution, we calculated the probabilities that new favorable effects of mutations on the phenotype were acquired and that existing favorable effects were maintained. In the simulation analyses, advantageous traits evolved in the population with a low mutation rate; however, when the mutation rate was extremely low, advantageous traits evolved slowly because few beneficial mutations occurred. Then, the numerical calculations showed that the probability of acquiring new favorable effects of mutations on the phenotype and the probability of maintaining existing favorable effects are high if the mutation rate is low. The former occurs because, if the mutation rate is high, multiple mutations may occur in a genome, and even if beneficial mutations occur, their favorable effects may be masked by simultaneously occurring deleterious mutations. However, if the mutation rate is low, it is likely that only one beneficial mutation occurs, and its favorable effect on the phenotype is direct. In conclusion, low mutation rates are advantageous because they promote favorable phenotypic effects of mutations without interference from deleterious mutations; these low rates not only prevent the occurrence of deleterious mutations but also help maintain existing beneficial mutations and promote the evolution of advantageous traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-020-00091-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!