Chloride is beneficial for growth of the xerophyte Pugionium cornutum by enhancing osmotic adjustment capacity under salt and drought stresses.

J Exp Bot

State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China.

Published: July 2020

AI Article Synopsis

Article Abstract

Chloride (Cl-) is pervasive in saline soils, and research on its influence on plants has mainly focused on its role as an essential nutrient and its toxicity when excessive accumulation occurs. However, the possible functions of Cl- in plants adapting to abiotic stresses have not been well documented. Previous studies have shown that the salt tolerance of the xerophytic species Pugionium cornutum might be related to high Cl- accumulation. In this study, we investigated the Cl--tolerant characteristics and possible physiological functions of Cl- in the salt tolerance and drought resistance of P. cornutum. We found that P. cornutum can accumulate a large amount of Cl- in its shoots, facilitating osmotic adjustment and turgor generation under saline conditions. Application of DIDS (4,4´-diisothiocyanostilbene-2,2´-disulfonic acid), a blocker of anion channels, significantly inhibited Cl- uptake, and decreased both the Cl- content and its contribution to leaf osmotic adjustment, resulting in the exacerbation of growth inhibition in response to NaCl. Unlike glycophytes, P. cornutum was able to maintain NO3- homeostasis in its shoots when large amounts of Cl- were absorbed and accumulated. The addition of NaCl mitigated the deleterious effects of osmotic stress on P. cornutum because Cl- accumulation elicited a strong osmotic adjustment capacity. These findings suggest that P. cornutum is a Cl--tolerant species that can absorb and accumulate Cl- to improve growth under salt and drought stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337195PMC
http://dx.doi.org/10.1093/jxb/eraa158DOI Listing

Publication Analysis

Top Keywords

osmotic adjustment
16
cl-
10
pugionium cornutum
8
adjustment capacity
8
salt drought
8
drought stresses
8
functions cl-
8
salt tolerance
8
cl- accumulation
8
cornutum
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!