Automated analysis of scanning electron microscopic images for assessment of hair surface damage.

R Soc Open Sci

Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550, USA.

Published: January 2020

Mechanical damage of hair can serve as an indicator of health status and its assessment relies on the measurement of morphological features via microscopic analysis, yet few studies have categorized the extent of damage sustained, and instead have depended on qualitative profiling based on the presence or absence of specific features. We describe the development and application of a novel quantitative measure for scoring hair surface damage in scanning electron microscopic (SEM) images without predefined features, and automation of image analysis for characterization of morphological hair damage after exposure to an explosive blast. Application of an automated normalization procedure for SEM images revealed features indicative of contact with materials in an explosive device and characteristic of heat damage, though many were similar to features from physical and chemical weathering. Assessment of hair damage with tailing factor, a measure of asymmetry in pixel brightness histograms and proxy for surface roughness, yielded 81% classification accuracy to an existing damage classification system, indicating good agreement between the two metrics. Further ability of the tailing factor to score features of hair damage reflecting explosion conditions demonstrates the broad applicability of the metric to assess damage to hairs containing a diverse set of morphological features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029898PMC
http://dx.doi.org/10.1098/rsos.191438DOI Listing

Publication Analysis

Top Keywords

hair damage
12
damage
10
scanning electron
8
electron microscopic
8
assessment hair
8
hair surface
8
surface damage
8
morphological features
8
sem images
8
tailing factor
8

Similar Publications

Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose-Anionic Surfactant Complexes on Negatively Charged Substrates.

Polymers (Basel)

January 2025

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de la Ciencias s/n, 28040 Madrid, Spain.

This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)-sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE-SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres.

View Article and Find Full Text PDF

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

Hair graying is one of the common visible signs of human aging, resulting from decreased or abolished melanogenesis due to the depletion of melanocyte stem cells through excess accumulation of oxidative stress. Cell-free therapy using a conditioned medium (CM) of mesenchymal stem cells has been highlighted in the field of regenerative medicine owing to its potent therapeutic effects with lower regulatory hurdles and safety risk. Recently, we demonstrated that a CM of an immortalized stem cell line from human exfoliated deciduous teeth (SHED) has protective effects against a mouse model of ulcer formation via antioxidative and angiogenic activities mediated by HGF and VEGF.

View Article and Find Full Text PDF

The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.

View Article and Find Full Text PDF

Heterocyclic aromatic amines (HAAs), formed during the cooking of meat, are potential human carcinogens, underscoring the need for long-lived biomarkers to assess exposure and cancer risk. Frequent consumption of well-done meats containing 2-amino-1-methyl-6-phenylimidazo[4,5-]pyridine (PhIP), a prevalent HAA that is a prostatic carcinogen in rodents and DNA-damaging agent in human prostate cells, has been linked to aggressive prostate cancer (PC) pathology. African American (AA) men face nearly twice the risk for developing and dying from PC compared to White men.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!