We developed a time-dependent stochastic neutral model for predicting diverse temporal trajectories of biodiversity change in response to ecological disturbance (i.e. habitat destruction) and dispersal dynamic (i.e. emigration and immigration). The model is general and predicts how transition behaviours of extinction may accumulate according to a different combination of random drift, immigration rate, emigration rate and the degree of habitat destruction. We show that immigration, emigration, the areal size of the destroyed habitat and initial species abundance distribution (SAD) can impact the total biodiversity loss in an intact local area. Among these, the SAD plays the most deterministic role, as it directly determines the initial species richness in the local target area. By contrast, immigration was found to slow down total biodiversity loss and can drive the emergence of species credits (i.e. a gain of species) over time. However, the emigration process would increase the extinction risk of species and accelerate biodiversity loss. Finally but notably, we found that a shift in the emigration rate after a habitat destruction event may be a new mechanism to generate species credits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029950 | PMC |
http://dx.doi.org/10.1098/rsos.191039 | DOI Listing |
Animal
December 2024
Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy. Electronic address:
Domestic pigs (Sus scrofa) raised under natural conditions can show their complete behavioural repertoire. However, rooting behaviour can have a great impact on the environment. In the context of the promotion of farm animal welfare and environmental concerns, this study investigated the potential of nose-clips as a less invasive alternative to nose-rings for the management of rooting behaviour of free-ranging pigs.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
Diffuse-type tenosynovial giant cell tumor (dTGCT) is a destructive but rare benign proliferative synovial neoplasm. Although surgery is currently the main treatment modality for dTGCT, the recurrence risk is up to 50%. Therefore, there is a great need for effective drugs against dTGCT with minor side effects.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, USA.
Vitiligo is a chronic autoimmune skin condition characterized by depigmentation due to the destruction of melanocytes. Recent research has identified potential links between vitiligo and alterations in both the gut and skin microbiomes. This systematic review aims to explore these microbiome changes and their potential role in the onset and progression of vitiligo.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.
The southeastern Yunnan is one of the most typical areas in China with karst landforms. The rich variety of vegetation types and plant diversity means that threatened status are also synchronized. Over the past 20 years, the comprehensive conservation team for plant species with extremely small populations (PSESP) has conducted in-depth field surveys in the region, combining relevant literature and conservation projects to compile a list of PSESP which including conservation and endangered status, conservation actions, and scientific research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!