A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hospital ventilation simulation for the study of potential exposure to contaminants. | LitMetric

Hospital ventilation simulation for the study of potential exposure to contaminants.

Build Simul

Department of Energy Engineering "Sergio Stecco", via S. Marta 3, 50139 Firenze, Italy.

Published: December 2011

Airflow and ventilation are particularly important in healthcare rooms for controlling thermo-hygrometric conditions, providing anaesthetic gas removal, diluting airborne bacterial contamination and minimizing bacteria transfer airborne. An actual hospitalization room was the investigate case study. Transient simulations with computational fluid dynamics (CFD), based on the finite element method (FEM) were performed to investigate the efficiency of the existing heating, ventilation and air-conditioning (HVAC) plant with a variable air volume (VAV) primary air system. Solid modelling of the room, taking into account thermo-physical properties of building materials, architectural features (e.g., window and wall orientation) and furnishing (e.g., beds, tables and lamps) arrangement of the room, inlet turbulence high induction air diffuser, the return air diffusers and two patients lying on two parallel beds was carried out. Multiphysics modelling was used: a thermo-fluidynamic model (convection-conduction and incompressible Navier-Stokes) was combined with a convection-diffusion model. Three 3D models were elaborated considering different conditions/events of the patients (i.e., the first was considered coughing and/or the second breathing). A particle tracing and diffusion model, connected to cough events, was developed to simulate the dispersal of bacteria-carrying droplets in the isolation room equipped with the existing ventilation system. An analysis of the region of droplet fallout and the dilution time of bacteria diffusion of coughed gas in the isolation room was performed. The analysis of transient simulation results concerning particle path and distance, and then particle tracing combined with their concentration, provided evidence of the formation of zones that should be checked by microclimatic and contaminant control. The present study highlights the fact that the CFD-FEM application is useful for understanding the efficiency, adequacy and reliability of the ventilation system, but also provides important suggestions for controlling air quality, patients' comfort and energy consumption in a hospital.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090620PMC
http://dx.doi.org/10.1007/s12273-011-0019-6DOI Listing

Publication Analysis

Top Keywords

particle tracing
8
isolation room
8
ventilation system
8
room
5
air
5
hospital ventilation
4
ventilation simulation
4
simulation study
4
study potential
4
potential exposure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!