A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analyzing and learning the language for different types of harassment. | LitMetric

THIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE, VULGAR, OR OFFENSIVE BY SOME READERS. The presence of a significant amount of harassment in user-generated content and its negative impact calls for robust automatic detection approaches. This requires the identification of different types of harassment. Earlier work has classified harassing language in terms of hurtfulness, abusiveness, sentiment, and profanity. However, to identify and understand harassment more accurately, it is essential to determine the contextual type that captures the interrelated conditions in which harassing language occurs. In this paper we introduce the notion of contextual type in harassment by distinguishing between five contextual types: (i) sexual, (ii) racial, (iii) appearance-related, (iv) intellectual and (v) political. We utilize an annotated corpus from Twitter distinguishing these types of harassment. We study the context of each kind to shed light on the linguistic meaning, interpretation, and distribution, with results from two lines of investigation: an extensive linguistic analysis, and the statistical distribution of uni-grams. We then build type- aware classifiers to automate the identification of type-specific harassment. Our experiments demonstrate that these classifiers provide competitive accuracy for identifying and analyzing harassment on social media. We present extensive discussion and significant observations about the effectiveness of type-aware classifiers using a detailed comparison setup, providing insight into the role of type-dependent features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100939PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227330PLOS

Publication Analysis

Top Keywords

types harassment
12
harassment
8
harassing language
8
contextual type
8
analyzing learning
4
language
4
learning language
4
types
4
language types
4
harassment article
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!