Obesity and insulin resistance are associated with dysbiosis of the gut microbiota and impaired intestinal barrier function. Herein, we report that Bofutsushosan (BFT), a Japanese herbal medicine, Kampo, which has been clinically used for constipation in Asian countries, ameliorates glucose metabolism in mice with diet-induced obesity. A 16S rRNA sequence analysis of fecal samples showed that BFT dramatically increased the relative abundance of Verrucomicrobia, which was mainly associated with a bloom of Akkermansia muciniphila (AKK). BFT decreased the gut permeability as assessed by FITC-dextran gavage assay, associated with increased expression of tight-junction related protein, claudin-1, in the colon. The BFT treatment group also showed significant decreases of the plasma endotoxin level and expression of the hepatic lipopolysaccharide-binding protein. Antibiotic treatment abrogated the metabolic effects of BFT. Moreover, many of these changes could be reproduced when the cecal contents of BFT-treated donors were transferred to antibiotic-pretreated high fat diet-fed mice. These data demonstrate that BFT modifies the gut microbiota with an increase in AKK, which may contribute to improving gut barrier function and preventing metabolic endotoxemia, leading to attenuation of diet-induced inflammation and glucose intolerance. Understanding the interaction between a medicine and the gut microbiota may provide insights into new pharmacological targets to improve glucose metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099031 | PMC |
http://dx.doi.org/10.1038/s41598-020-62506-w | DOI Listing |
Chemistry
December 2024
Osaka University, Graduate School of Pharmaceutical Sciences, 1-6, Yamada-oka, 565-0871, Osaka, JAPAN.
Deuterated molecules are of growing interest because of the specific characteristics of deuterium, such as stronger C-D bonds being stronger than C-H bonds. Polyethylene glycols (PEGs) are widely utilized in scientific fields (e.g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Xiamen University, College of Chemistry and Chemical Engineering, 402 Siming Road, 361005, Xiamen, CHINA.
PtRu-based catalysts toward hydrogen oxidation reaction (HOR) suffer from low efficiency, CO poisoning and over-oxidation at high potentials. In this work, an amorphization strategy is adopted for preparation of amorphous SrRuPtOxHy nanobelts (a-SrRuPtOxHy NBs). The a-SrRuPtOxHy NBs have optimized adsorption of intermediates (H and OH), increased number of active sites, highly weakened CO poisoning and enhanced anti-oxidation ability owing to the special amorphous structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 21 Nanyang Link, 637371, Singapore, SINGAPORE.
Microglial phagocytosis is a highly energy-consuming process that plays critical roles in clearing neurotoxic amyloid-β (Aβ) in Alzheimer's disease (AD). However, microglial metabolism is defective overall in AD, thereby undermining microglial phagocytic functions. Herein, we repurpose the existing antineoplastic drug lonidamine (LND) conjugated with hollow mesoporous Prussian blue (HMPB) as a "microglial energy modulator" (termed LND@HMPB-T7) for safe and synergistic Aβ clearance.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Sichuan University, Department of Chemistry, wangjiang road NO.64, 610065, Chengdu, CHINA.
Enhancing the conversion efficiency of all-solid-state lasers through the rational design of crystal materials with superior linear and nonlinear optical (NLO) properties remains a formidable challenge. Herein, we present a novel approach to optimizing these properties in KBe2BO3F2 (KBBF)-analog crystals via functional group self-polymerization. This strategy led to the synthesis of two new optical crystals: noncentrosymmetric CsAs2O3Br and centrosymmetric CsAs4O6Br.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Sanford Consortium for Regenerative Medicine; Sanford Burnham Prebys Medical Discovery Institute; Department of Pediatrics, University of California, San Diego School of Medicine;
Human lung tissue is composed of an interconnected network of epithelium, mesenchyme, endothelium, and immune cells from the upper airway of the nasopharynx to the smallest alveolar sac. Interactions between these cells are crucial in lung development and disease, acting as a barrier against harmful chemicals and pathogens. Current in vitro co-culture models utilize immortalized cell lines with different biological backgrounds, which may not accurately represent the cellular milieu or interactions of the lung.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!