Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple transistors and complicated layouts that limit integration density. Here, we demonstrate unprecedented electrostatic control of dual-gated Gaussian heterojunction transistors for simplified spiking neuron implementation. These devices employ wafer-scale mixed-dimensional van der Waals heterojunctions consisting of chemical vapor deposited monolayer molybdenum disulfide and solution-processed semiconducting single-walled carbon nanotubes to emulate the spike-generating ion channels in biological neurons. Circuits based on these dual-gated Gaussian devices enable a variety of biological spiking responses including phasic spiking, delayed spiking, and tonic bursting. In addition to neuromorphic computing, the tunable Gaussian response has significant implications for a range of other applications including telecommunications, computer vision, and natural language processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099079 | PMC |
http://dx.doi.org/10.1038/s41467-020-15378-7 | DOI Listing |
J Mater Chem B
December 2024
School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India.
Tunable redox-sensitive polymeric-lipid hybrid nanocarriers (RS-PLHNCs) were fabricated using homogenization and nanoprecipitation methods. These nanocarriers were composed of novel redox-cholesterol with disulfide linkages and synthesized by conjugating cholesterol with dithiodipropionic acid esterification. Berberine (BBR) was loaded into the fabricated nanocarriers to investigate the selective uptake of BBR by cancer cells as well as its release and enhanced cytotoxicity.
View Article and Find Full Text PDFWe experimentally demonstrate a 10-Gbit/s free-space communication link using a single Laguerre-Gaussian (LG) beam with tunable radial and azimuthal modal indices generated by a photonic integrated circuit comprising two concentric uniform circular antenna arrays (UCAs). To tune the azimuthal modal indices ℓ of the generated beam, the azimuthal phase gradient inside each UCA is tuned. To tune the radial mode p of the generated beam, the amplitude ratio and phase difference between the two concentric UCA are tuned.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
Carbon quantum dots (CQDs) with fluorescence emission have been widely studied for versatile applications, but facile tunability of the spectral properties of CQDs by doping remains to be further explored. Herein, employing lanthanide ion Eu as a dopant and activator, a simple and efficient synthesis route for pure CQDs and Eu-CQDs was demonstrated using N, N-dimethylformamide, oleic acid, and oleylamine as precursors for carbon sources. In comparison, with the popular citric acid precursor, the as-prepared CQDs and Eu-CQDs exhibited an obviously smaller particle size (1.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.
The development of rapidly distributed and retained probes within the kidneys is important for accurately diagnosing kidney diseases. Although molecular imaging shows the potential for non-intrusively interrogating kidney disease-related biomarkers, the limited kidney contrast of many fluorophores, owing to their relatively low distribution in the kidney, hinders their effectiveness for kidney disease detection. Herein, for the first time, an amino-functionalization strategy is proposed to construct a library of kidney-targeting fluorophores NHcy with tunable emissions from NIR-I to NIR-II.
View Article and Find Full Text PDFThe generation of tunable extreme-ultraviolet (EUV) vortex beams is highly sought after for optoelectronic applications in the EUV region. In this study, we investigate the generation of vortex high-order harmonics using a ring Pearcey-Gaussian vortex beam as the driving source. We analyze the beam's spatial structure through phase-matching conditions and simulate high-order harmonic generation by solving the Maxwell wave equations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!