We investigate thermal rectification and thermal resistance in a hybrid pillared-graphene and graphene (PGG) system by both molecular dynamics (MD) simulation and a continuum model. First, the thermal conductivity of both pillared-graphene and graphene is calculated by employing MD simulation and Fourier's law. Our results show that the thermal conductivity of the pillared-graphene is much smaller than that of graphene by one order of magnitude. Next, by applying positive and negative temperature gradients along the longitudinal direction of the PGG, the thermal rectification is examined. The MD results indicate that for the lengths in the range of 3686 nm, the thermal rectification remains almost constant (~3%-5%). We have also studied the phonon density of states (DOS) on both sides of the interface of PGG. The DOS curves show that there is phonon scattering at low frequencies that depends on the imposed temperature gradient direction in the system. Therefore, we can introduce the PGG as a thermal rectifier at room temperature. Furthermore, next, we also explore the temperature distribution over the PGG by using the continuum model. The results obtained from the continuum model predict the MD results, such as the temperature distribution in the upper half-layer and lower full-layer graphene, the temperature gap, and also the thermal resistance at the interface. This study could help in the design of chip coolers, and phononic devices such as thermal nanodiodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab8420 | DOI Listing |
Materials (Basel)
January 2025
Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.
The n-TiO nanoballs-sticks (TiO NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected four distinct emission peaks at 402 nm, 410 nm, 429 nm, and 456 nm that have the potential to be applied in white-green light-emitting devices.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Electrical and Computer Engineering, Nazarbayev University, Nazarbayev University, Astana, Kazakhstan, Astana, 010000, KAZAKHSTAN.
Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Electrical and Computer Engineering, Nazarbayev University, Nazarbayev University, Astana, Kazakhstan, Astana, 010000, KAZAKHSTAN.
Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:
The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials.
View Article and Find Full Text PDFSci Rep
December 2024
Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO, 80305, USA.
The warm Western Boundary Currents (WBCs) and their zonal extensions are persistent, deep, strong and narrow oceanic currents. They are known to anchor and energize the Extra-Tropical storm tracks by frontal thermal air-sea interactions. However, even in the latest generation of climate models, WBCs are characterized by large biases, and both the present storm-track activity and its recent intensification are poorly estimated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!