Injectable biphasic calcium phosphate bone cements (BCPCs) composed of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) have been intensively investigated because of their high rate of biodegradation, bioactivity and osteoconductivity, which can be adjusted by changing the ratio between β-TCP and HA phases after setting. The aim of this study was to evaluate the performance of 1 wt% chitosan fiber additive with biphasic calcium phosphate as an injectable bone cement both in vitro and in vivo. In vitro evaluation of compressive strength, degradation rate, morphology, and cell and alkaline phosphatase activities was done by comparison with bone cement without β-TCP. The in vivo results for micro-CT scanning and histological examinations for three groups (control, BCPC and commercial biphasic calcium phosphate granules) were characterized and compared. After the addition of 20 wt% β-TCP to calcium phosphate cement, the initial and final setting times of the sample were 3.92 min and 11.46 min, respectively, which were not significantly different from cement without β-TCP. The degradation time of the BCPC material was longer than that of calcium phosphate cement alone. The healing process was significantly faster for BCPC than for the control and commercial product groups. Therefore, this is the first evidence that BCPC is an attractive option for bone surgery due to its faster stimulation of healing and faster degradation rate.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ab8441DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
24
bone cement
12
biphasic calcium
12
phosphate bone
8
cement vitro
8
vitro vivo
8
degradation rate
8
cement β-tcp
8
phosphate cement
8
phosphate
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!