Image alignment/registration/correspondence is a critical prerequisite for many vision-based tasks, and it has been widely studied in computer vision. However, aligning images from different domains, such as cross-weather/season road scenes, remains a challenging problem. Inspired by the success of classic intensity-constancy-based image alignment methods and the modern generative adversarial network (GAN) technology, we propose a cross-weather road scene alignment method called latent generative model with intensity constancy. From a novel perspective, the alignment problem is formulated as a constrained 2D flow optimization problem with latent encoding, which can be decoded into an intensity-constancy image on the latent image manifold. The manifold is parameterized by a pre-trained GAN, which is able to capture statistic characteristics from large datasets. Moreover, we employ the learned manifold to constrain the warped latent image identical to the target image, thereby producing a realistic warping effect. Experimental results on several cross-weather/season road scene datasets demonstrate that our approach can significantly outperform the state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2020.2980210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!