Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reliable guidance for crop selection and related management to achieve sustainable soil resource use in rubber agroforestry systems is limited. One important reason for this limited guidance is that our understanding of the effects of different plant functional groups on soil resources is still insufficient. Here, to examine the effects of the species composition of trees, shrubs and herbs on soil nutrients and soil water with increases in the complexity of the plant community structure, we measured the soil nutrient concentrations (i.e., C, N, P, K, Ca and Mg), soil water content and soil water residence time (with stable hydrogen and oxygen isotope tracers) at six soil depths in a monoculture rubber plantation, four multi-species rubber agroforestry systems, and a tropical rainforest. As the plant species composition increased, the soil C and N increased. The soil water content also increased with increases in soil C and N. However, the effects of plant species composition on the soil water content gradually changed from positive to negative, especially under the effects of herb species, which could accelerate soil water drainage and hence shorten the soil water residence time. Therefore, the faster water infiltration and potentially higher flow of soil water in complex plant communities increased the risk and magnitude of mineral nutrient leaching. In addition, as the plant composition increased, plant competition decreased the concentration of soil nutrients, especially soil P, K and Ca. In general, plant interspecific interactions definitively decreased soil mineral nutrients as the plant composition increased, and the effects of tree, shrub and herb species on soil nutrients and soil water differed and sometimes appeared contradictory. However, the effects of plant species composition on soil gradually weakened with increases in soil depth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!