Cloning, expression and purification of the low-complexity region of RanBP9 protein.

Protein Expr Purif

Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, United States. Electronic address:

Published: August 2020

Recombinant expression and purification of proteins is key for biochemical and biophysical investigations. Although this has become a routine and standard procedure for many proteins, intrinsically disordered ones and those with low complexity sequences pose difficulties. Proteins containing low complexity regions (LCRs) are increasingly becoming significant for their roles in both normal and pathological processes. Here, we report cloning, expression and purification of N-terminal LCR of RanBP9 protein (Nt-RanBP9). RanBP9 is a scaffolding protein present in both cytoplasm and nucleus that is implicated in many cellular processes. Nt-RanBP9 is a poorly understood region of the protein perhaps due to difficulties posed by the LCR. Indeed, conventional methods presented difficulties in Nt-RanBP9 cloning due to its high GC content resulting in insignificant protein expression. These led us to use a different approach of cloning by expressing the protein as a fusion construct containing mCherry or mEGFP using in vivo DNA recombination methods. Our results indicate that expression of mEGFP-tagged Nt-RanBP9 followed by thrombin cleavage of the tag was the most effective method to obtain the protein with >90% purity and good yields. We report and discuss the challenges in obtaining the N-terminal region of RanBP9, a protein with functional implications in multiple biological processes and neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252940PMC
http://dx.doi.org/10.1016/j.pep.2020.105630DOI Listing

Publication Analysis

Top Keywords

expression purification
12
ranbp9 protein
12
cloning expression
8
region ranbp9
8
protein
8
low complexity
8
cloning
4
purification low-complexity
4
low-complexity region
4
ranbp9
4

Similar Publications

This study aimed to detect the presence of bovine papillomavirus (BPV) in the testicular tissue of bulls over 1-year old by immunohistochemical, immunofluorescence and molecular assay targeting methods. In addition, γH2AX and cytochrome c expressions were evaluated by immunohistochemical and immunofluorescent methods in samples positive for BPV agent. In this study, 100 testicular specimens that did not show any macroscopic papilloma findings were collected.

View Article and Find Full Text PDF

Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana.

Mol Hortic

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.

Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.

View Article and Find Full Text PDF

Regulatory role of the mTOR signaling pathway in autophagy and mesangial proliferation in IgA nephropathy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011.

Objectives: IgA nephropathy (IgAN) is the most common primary glomerular disease in China, but its pathogenesis remains unclear. This study aims to explore the regulatory role of the mammalian target of rapamycin (mTOR) signaling pathway in autophagy and mesangial proliferation during renal injury in IgA.

Methods: The activity of mTOR and autophagy was evaluated in kidney samples from IgAN patients and in an IgAN mouse model induced by oral bovine serum albumin and carbon tetrachloride (CCl4) injection.

View Article and Find Full Text PDF

Background: Risk of anal cancer is high in certain populations and screening involves collection of anal swabs for HPV DNA and/or cytology testing. However, barriers exist, such as the need for an intimate examination, and stigma around HIV status, sexual orientation, and sexual practices. Self-collected anal swabs (SCA) are a proposed alternative to clinician-collected swabs (CCA) to overcome these barriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!