Anterior cingulate cortex (ACC) plays important roles in sensory perception including pain and itch. Neurons in the ACC receive various neuromodulatory inputs from subcortical structures, including locus coeruleus noradrenaline (LC-NA) neurons. Few studies have been reported about synaptic and behavioral functions of LC-NA projections to the ACC. Using viral-genetic method (AAV-DIO-eYFP) on DBH-cre mice, we found that LC-NA formed synaptic connections to ACC pyramidal cells but not interneurons. This is further supported by the electron microscopic study showing NAergic fibers contact the presynaptic inputs and post-synaptic areas of the pyramidal cells. NA application produced both pre- and post-synaptic potentiation effects in ACC excitatory transmission in vivo and in vitro. Activation of LC-NA projection to the ACC by optogenetic method produced enhancement of excitatory transmission in vitro and induced scratching and behavioral sensitization for mechanical stimulation. Our results demonstrate that LC-NA projections enhance or facilitate brain responses to pain and itch by potentiating glutamatergic synaptic transmissions in the ACC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098117PMC
http://dx.doi.org/10.1186/s13041-020-00586-5DOI Listing

Publication Analysis

Top Keywords

locus coeruleus
8
anterior cingulate
8
cingulate cortex
8
pain itch
8
lc-na projections
8
pyramidal cells
8
excitatory transmission
8
acc
7
lc-na
5
ascending noradrenergic
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Physiopathology in Aging Laboratory (LIM-22), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.

Background: Excessive daytime sleepiness is a common and early symptom of Alzheimer's disease (AD). The subcortical wake-promoting neurons in the lateral hypothalamic area, tuberomammillary nucleus (TMN), and locus coeruleus synchronize to maintain wakefulness/arousal. Although significant neuronal decline occurs in wake-promoting regions, the TMN histaminergic neurons remain relatively more intact than orexinergic and nor-adrenergic neurons.

View Article and Find Full Text PDF

Background: It is increasingly apparent that tau pathology in Alzheimer's disease (AD) begins in the brainstems of middle-aged patients, decades before the onset of symptoms. Most studies are, however, based on brain-bank cohorts and focus on patients dying of natural causes. The true incidence of tau pathology in the brainstem thus remains unclear.

View Article and Find Full Text PDF

Background: The locus coeruleus (LC), is the first brain region to develop hyperphosphorylated tau (ptau) inclusions in Alzheimer's disease (AD) and undergoes catastrophic degeneration in later stages of the disease. Importantly, the LC is the main noradrenergic nucleus in the brain and source of NE in the forebrain, and dysregulation of the neurotransmitter norepinephrine (NE) is associated with AD symptoms, as its release in the forebrain regulates attention, arousal, stress response, and learning and memory. Moreover, the LC may transmit pathogenic tau to the forebrain via its extensive projections.

View Article and Find Full Text PDF

Background: Alzheimer's disease disproportionately affects women in the U.S., with two-thirds of individuals diagnosed being female.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a pressing global health concern, particularly among the elderly population. Early detection and intervention are vital for effective management. Recent research has identified the Locus Corelulus (LC) as one of the initial sites of pathology in AD, characterized by the degeneration of norepinephrine (NE) producing cells, resulting in cognitive and mood disturbances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!