Frontonasal dysplasia (FND) is a rare developmental disorder characterized by mild to severe changes in skull and brain structures. It is a phenotypically variable and heterogeneous disorder. This study was designed to provide a clinical and genetic analysis of FND in a consanguineous family of Pakistani origin. Affected individuals in the family showed characteristic features of frontonasal dysplasia type-2 (FND2), such as nasal bone hypoplasia, hypertelorism, and alopecia. Skull and brain imaging of affected members revealed ossification defects and various types of brain structural anomalies that created a split-brain. Sanger sequencing of the gene revealed a homozygous missense variant [NM_021926.4: c.652C>T; p.(Arg218Trp)] in three affected members who demonstrated severe craniofacial anomalies. Heterozygous carriers in the family showed mild FND2 phenotypes. Clinical and genetic analysis of a family, exhibiting FND2 phenotypes, revealed several previously unreported clinical features and a novel missense variant in the gene. These results will facilitate diagnosis and genetic counseling of the FND patients in the Pakistani population.

Download full-text PDF

Source
http://dx.doi.org/10.1089/gtmb.2019.0203DOI Listing

Publication Analysis

Top Keywords

missense variant
12
frontonasal dysplasia
12
novel missense
8
variant gene
8
mild severe
8
consanguineous family
8
skull brain
8
clinical genetic
8
genetic analysis
8
fnd2 phenotypes
8

Similar Publications

Functional Characterization and In Silico Prediction Tools Improve the Pathogenicity Prediction of Novel Bile Acid Transporter Variants.

Clin Genet

January 2025

Human Molecular Genetics Group, National Health Commission (NHC), Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China.

The pathogenicity of cholestatic liver diseases (CLDs) remains insufficiently characterized, hindering definitive diagnosis and timely treatment. The aim of this study was to improve the pathogenicity prediction of novel bile acid (BA) transporter variants in patients with CLDs. We analyzed the clinical characteristics and genetic profiles of a CLD cohort (n = 57) using multiple in silico tools and in vitro functional assays.

View Article and Find Full Text PDF

To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.

View Article and Find Full Text PDF

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.

View Article and Find Full Text PDF

Phenotype and genetic spectrum of six Indian patients with bestrophinopathy.

Taiwan J Ophthalmol

December 2024

Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.

The aim of this study is to describe genotype and phenotype of patients with bestrophinopathy. The case records were reviewed retrospectively, findings of multimodal imaging such as color fundus photograph, optical coherence tomography (OCT), fundus autofluorescence, electrophysiological, and genetic tests were noted. Twelve eyes of six patients from distinct Indian families with molecular diagnosis were enrolled.

View Article and Find Full Text PDF

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!