We present resistivity and thermal-conductivity measurements of superconducting FeSe in intense magnetic fields up to 35 T applied parallel to the ab plane. At low temperatures, the upper critical field μ_{0}H_{c2}^{ab} shows an anomalous upturn, while thermal conductivity exhibits a discontinuous jump at μ_{0}H^{*}≈24  T well below μ_{0}H_{c2}^{ab}, indicating a first-order phase transition in the superconducting state. This demonstrates the emergence of a distinct field-induced superconducting phase. Moreover, the broad resistive transition at high temperatures abruptly becomes sharp upon entering the high-field phase, indicating a dramatic change of the magnetic-flux properties. We attribute the high-field phase to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state, where the formation of planar nodes gives rise to a segmentation of the flux-line lattice. We point out that strongly orbital-dependent pairing as well as spin-orbit interactions, the multiband nature, and the extremely small Fermi energy are important for the formation of the FFLO state in FeSe.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.107001DOI Listing

Publication Analysis

Top Keywords

high-field phase
8
fflo state
8
evidence fulde-ferrell-larkin-ovchinnikov
4
state
4
fulde-ferrell-larkin-ovchinnikov state
4
state segmented
4
segmented vortices
4
vortices bcs-bec-crossover
4
bcs-bec-crossover superconductor
4
superconductor fese
4

Similar Publications

Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS Heterostructure.

J Phys Chem Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.

View Article and Find Full Text PDF

Probing Berry Phase Effect in Topological Surface States.

Phys Rev Lett

December 2024

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.

View Article and Find Full Text PDF

A new and high performance polytetrafluoroethylene (PTFE) digestor was designed and fabricated in-house for the total dissolution of granite samples for the determination of technology-critical elements (TCEs) by inductively coupled plasma optical emission spectrometry (ICP-OES). Initially, the granite sample (∼0.25 g) was placed in the PTFE digestor and added 8 mL(v/v) of 20%HF+40%HCl+10%HNO acid mixture.

View Article and Find Full Text PDF

Although trifluoroacetic acid (TFA) is not typically considered a Hofmeister reagent, it has been demonstrated to modulate biocoacervation. We show that TFA can be employed to probe specific interactions in coacervating bioinspired peptide phenylalanine (Phe) F-labeled at a single site, altering its liquid-liquid phase separation (LLPS) behavior. Solid-state nuclear magnetic resonance (NMR) spectroscopy revealed two dynamically distinct binding modes of TFA with Phe, resulting in a structured, dipolar-ordered complex and a more dynamic complex, highlighting the proximity between TFA and Phe.

View Article and Find Full Text PDF

ORACLE: An analytical approach for T, T, proton density, and off-resonance mapping with phase-cycled balanced steady-state free precession.

Magn Reson Med

December 2024

Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Purpose: To develop and validate a novel analytical approach simplifying , , proton density (PD), and off-resonance quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.

Theory And Methods: Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!