Deep subsurface biofilms are estimated to host the majority of prokaryotic life on Earth, yet fundamental aspects of their ecology remain unknown. An inherent difficulty in studying subsurface biofilms is that of sample acquisition. While samples from marine and terrestrial deep subsurface fluids have revealed abundant and diverse microbial life, limited work has described the corresponding biofilms on rock fracture and pore space surfaces. The recently established Deep Mine Microbial Observatory (DeMMO) is a long-term monitoring network at which we can explore the ecological role of biofilms in fluid-filled fractures to depths of 1.5 km. We carried out in situ cultivation experiments with single minerals representative of DeMMO host rock to explore the ecological drivers of biodiversity and biomass in biofilm communities in the continental subsurface. Coupling cell densities to thermodynamic models of putative metabolic reactions with minerals suggests a metabolic relationship between biofilms and the minerals they colonize. Our findings indicate that minerals can significantly enhance biofilm cell densities and promote selective colonization by taxa putatively capable of extracellular electron transfer. In turn, minerals can drive significant differences in biodiversity between fluid and biofilm communities. Given our findings at DeMMO, we suggest that host rock mineralogy is an important ecological driver in deep continental biospheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gbi.12391 | DOI Listing |
Microorganisms
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy.
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland.
Microbiological communities have a significant impact on health and disease. are ubiquitous fungal pathogens that colonize the mucosal surfaces of the genital, urinary, respiratory, and gastrointestinal tracts, as well as the oral cavity. If the immune system is inadequate, then infections may pose a significant threat.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania.
Good oral hygiene is crucial during treatment with fixed appliances, emphasising the need for additional or alternative oral health methods during orthodontic treatment. This study investigates the effect of essential oil (EO)-based preparations on biofilm adhesion to orthodontic archwires. Five identical-sized orthodontic archwires of different materials were tested using therapeutic and preventive applications of essential oils.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Oral Health Centre, School of Dentistry, University of Queensland, Herston, QLD 4006, Australia.
Biofilms are structured microbial communities that adhere to various abiotic and biotic surfaces, where organisms are encased in an exo-polysaccharide matrix. Organisms within biofilms use various mechanisms that help them resist external challenges, such as antibiotics, rendering them more resistant to drugs. Therefore, researchers have attempted to develop suitable laboratory models to study the physical features of biofilms, their resistance mechanisms against antimicrobial agents, and their gene and protein expression profiles.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany.
. As biofilms are known to harbour (multi-)resistant species, their presence in health settings must be considered critical. Although there is evidence that bacteria spread from drains to the outside, there is still a lack of research data focusing on drain biofilms from hospitals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!