Hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma worldwide, with 250 million individuals chronically infected. Many stages of the HBV infectious cycle have been elucidated, but the mechanisms of HBV entry remain poorly understood. The identification of the sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor and the establishment of NTCP-overexpressing hepatoma cell lines susceptible to HBV infection opens up new possibilities for investigating these mechanisms. We used HepG2-NTCP cells, and various chemical inhibitors and RNA interference (RNAi) approaches to investigate the host cell factors involved in HBV entry. We found that HBV uptake into these cells was dependent on the actin cytoskeleton and did not involve macropinocytosis or caveolae-mediated endocytosis. Instead, entry occurred via the clathrin-mediated endocytosis pathway. HBV internalisation was inhibited by pitstop-2 treatment and RNA-mediated silencing (siRNA) of the clathrin heavy chain, adaptor protein AP-2 and dynamin-2. We were able to visualise HBV entry in clathrin-coated pits and vesicles by electron microscopy (EM) and cryo-EM with immunogold labelling. These data demonstrating that HBV uses a clathrin-mediated endocytosis pathway to enter HepG2-NTCP cells increase our understanding of the complete HBV life cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cmi.13205 | DOI Listing |
Hepatology
January 2025
Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan.
Background Aims: Hepatitis B virus (HBV) leads to severe liver diseases, such as cirrhosis and hepatocellular carcinoma. Identification of host factors that regulate HBV replication can provide new therapeutic targets. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV entry receptor has enabled the establishment of hepatic cell lines for analyzing HBV infection and propagation.
View Article and Find Full Text PDFVirol J
January 2025
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
Hepatitis B virus (HBV) infection can cause liver disease and lead to hepatocellular carcinoma (HCC). To better understand the factors involved in viral infection and pathogenesis and to develop novel therapies, it is crucial to investigate virus-host interactions. HBV infection has been shown to increase the expression of the unconventional prefoldin RPB5 interactor (URI1), a cellular protein that promotes liver tumorigenesis and HCC metastasis.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFJ Med Virol
December 2024
Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
BMC Med
November 2024
Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
Background: Hepatitis B virus (HBV) is an enveloped DNA virus that causes chronic hepatitis B (CHB) infection. Annexin, a Ca-activated protein, is widely expressed in various organs and tissues and has potential utility in disease diagnosis and treatment. However, the relationship between the annexin family and CHB remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!