Developing endothelial-protective, nonthrombogenic antirestenotic treatments has been a challenge. A major hurdle to this has been the identification of a common molecular target in both smooth muscle cells and endothelial cells, inhibition of which blocks dysfunction of both cell types. The authors' findings suggest that the PERK kinase could be such a target. Importantly, PERK inhibition mitigated both restenosis and thrombosis in preclinical models, implicating a low-thrombogenic antirestenotic paradigm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091514PMC
http://dx.doi.org/10.1016/j.jacbts.2019.12.005DOI Listing

Publication Analysis

Top Keywords

perk inhibition
8
low-thrombogenic antirestenotic
8
antirestenotic paradigm
8
inhibition mitigates
4
mitigates restenosis
4
restenosis and thrombosis
4
and thrombosis potential
4
potential low-thrombogenic
4
paradigm developing
4
developing endothelial-protective
4

Similar Publications

Neutrophil Extracellular Traps Induce Brain Edema Around Intracerebral Hematoma via ERK-Mediated Regulation of MMP9 and AQP4.

Transl Stroke Res

December 2024

Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.

Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.

View Article and Find Full Text PDF

Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals.

View Article and Find Full Text PDF

Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production.

J Adv Res

December 2024

Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China. Electronic address:

Introduction: Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear.

Objective: To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis.

View Article and Find Full Text PDF

This study aims to demonstrate the effect of toadflax (bufalin) on erlotinib resistance in nonsmall cell lung cancer (NSCLC) by inhibiting the fibroblast growth factor receptor (FGFR). The microfluidic mobility transferase and caliper mobility-shift assays were employed to detect the FGFR inhibition by bufalin and the binding reversibility. Further, the inhibitory effects of bufalin were determined in HCC827 and HCC827/ER cells in vitro, investigating relative FGFR overexpression by quantitative reverse transcriptase-PCR (RT-qPCR) and FGFR downstream proteins, that is, FGFR substrate 2 (FRS2), extracellular signal-regulated kinase (ERK), and S6 by western blot analysis.

View Article and Find Full Text PDF

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!